首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
We demonstrate the fabrication of a solid state heterojunction photovoltaic device with solution‐processed graphene oxide (GO) and n‐Si. Partially reduced GO with a high optical gap (2.8 eV) was spin‐coated on the n‐Si substrate and a heterojunction device was fabricated with the structure of Au/pr‐GO/n‐Si. In the fabricated device, incident light was transmitted through the thin GO film to reach the junction interface, generating photoexciton, and thereby a photovoltaic action was observed. By means of a built‐in electric potential at the GO/n‐Si junction, photoexcited electrons and holes can be separated, transported and collected at the electrodes.

  相似文献   


2.
Size, shape, and density‐controlled metal nanostructure, Au nanodot lattices fabricated by electron beam lithography, were embedded in thin organic solar cell consisting of PC71BM:PCPDTBT. The effects of their size and density on device performance were examined. Even though dipole res‐onances of Au nanodots were consistent with the absorption range of the active materials, there were no improvements in device performance under any sizes and densities. In addition, under high volume density of Au nanodots to PEDOT:PSS layer, the device performance was deteriorated. These results indicated that not only size and density but also other factors which determine light scattering characteristics greatly affect the device performance of solar cells. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

3.
We report here, for the first time, a simple method to prepare size‐controllable Au nanoparticles (NPs) in aqueous solutions from bulk Au substrates. First, chitosan (Ch)‐capped Au‐containing complexes were prepared by electrochemical oxidation–reduction cycles in 0.1 N NaCl and 1 g/l Ch solutions. Then the solutions were heated from room temperature to boiling at different heating rates to synthesize size‐controllable Au NPs. The particle sizes of the prepared Au(111) NPs could be controlled from 5 to 30 nm with an increase of the heating rate during preparation. Experimental results indicate that the prepared Au(111) NPs with diameters ranging from 10 to 30 nm can serve as surface‐enhanced Raman scattering active probes for molecules of rhodamine 6G. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
李琦  章勇 《物理学报》2018,67(6):67201-067201
采用旋涂Al_2O_3前驱体溶液和低温退火的方法在活性层上形成Al_2O_3薄膜,并与MoO_3结合形成Al_2O_3/MoO_3复合阳极缓冲层,制备了以聚3-己基噻吩:[6.6]-苯基-C_(61)-丁酸甲酯(P3HT:PC_(61)BM)为活性层的倒置聚合物太阳能电池,并通过改变Al_2O_3前驱体溶液的浓度来分析复合阳极缓冲层对器件性能的影响.结果发现,Al_2O_3/MoO_3复合阳极缓冲层能有效调控倒置聚合物太阳能电池的光电性能及其稳定性.当Al_2O_3前驱体溶液的浓度为0.15%时,器件光伏性能达到最优值,与MoO_3单缓冲层的器件相比,光电转换效率(PCE)由3.85%提高到4.64%;经过80天老化测试后,具有复合阳极缓冲层的器件PCE保留为初始值的76%,而单缓冲层的器件PCE已经下降到50%以下.器件性能得到改善的原因是Al_2O_3/MoO_3复合阳极缓冲层增强了倒置太阳能电池器件阳极对空穴的收集能力,同时钝化了器件活性层,从而提升了太阳能电池器件的光伏性能及其稳定性.  相似文献   

5.
A highly sensitive surface‐enhanced Raman scattering (SERS) platform for the selective trace analysis of persistent organic pollutant (POP) such as polychlorinated biphenyl (PCBs) was reported based on β‐CD modified gold nanoparticles (AuNPs) with the real environmental sample of polluted soil. The synthesized gold nanoparticles were characterized using UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD) and transmission electron microscopy (TEM). In polluted soil the presentation of PCB is confirmed by using GC‐MS. It is further verified and confirmed by using SERS. When the contaminated soil was added to the system, the binding of soil with β‐CD resulted in the aggregation of AuNPs, and excellent Raman signal was obtained which can reflect the isomers of polychlorinated biphenyls. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We used amorphous silicon oxide (a‐Si1–xOx:H) and microcrystalline silicon oxide (µc‐Si1–xOx:H) as buffer layer and p‐type emitter layer, respectively, in n‐type silicon hetero‐junction (SHJ) solar cells. We proposed to insert a thin (2 nm) intrinsic amorphous silicon (a‐Si:H) thin film between the thin (2.5 nm) a‐Si1–xOx:H buffer layer and the p‐layer to form a stack buffer layer of a‐Si:H/a‐Si1–xOx:H. As a result, a high open‐circuit voltage (VOC) and a high fill factor (FF) were obtained at the same time. Finally, a high efficiency of 19.0% (JSC = 33.46 mA/cm2, VOC = 738 mV, FF = 77.0%) was achieved on a 100 μm thick polished wafer using the stack buffer layer.

  相似文献   


7.
Three planar CH3NH3PbI3 (MAPbI3) solar cells having the same structure except a hole‐extraction layer (HEL) showed distinctive difference in operation characteristics. Analysis of frequency‐dependent capacitance and dielectric‐loss spectra of the three MAPbI3 devices showed two types of recombination‐loss channels with different time constants that we attributed respectively to interface and bulk defects. Discrepancy in defect formation among the three devices with a HEL of PEDOT:PSS, NiOx, or Cu‐doped NiOx was not surprising because grain‐size distribution and crystalline quality of MAPbI3 can be affected by surface energy and morphology of underlying HELs. We were able to quantify interface and bulk defects in these MAPbI3solar cells based on systematic and simultaneous simulations of capacitance and dielectric‐loss spectra, and current–voltage characteristics by using the device simulator SCAPS.

  相似文献   


8.
A systematic study on the surface‐enhanced Raman scattering (SERS) for 3,6‐bi‐2‐pyridyl‐1,2,4,5‐tetrazine (bptz) adsorbed onto citrate‐modified gold nanoparticles (cit‐AuNps) was carried out based on electronic and vibrational spectroscopy and density functional methods. The citrate/bptz exchange was carefully controlled by the stepwise addition of bptz to the cit‐AuNps, inducing flocculation and leading to the rise of a characteristic plasmon coupling band in the visible region. Such stepwise procedure led to a uniform decrease of the citrate SERS signals and to the rise of characteristic peaks of bptz, consistent with surface binding via the N heterocyclic atoms. In contrast, single addition of a large amount of bptz promoted complete aggregation of the nanoparticles, leading to a strong enhancement of the SERS signals. In this case, from the distinct Raman profiles involved, the formation of a new SERS environment became apparent, conjugating the influence of the local hot spots and charge‐transfer (CT) effects. The most strongly enhanced vibrations belong to a1 and b2 representations, and were interpreted in terms of the electromagnetic and the CT mechanisms: the latter involving significant contribution of vibronic coupling in the system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Silver nanoparticles deposited on various ‘inert’ porous materials (mainly Al2O3 and TiO2) are often used as substrates for surface‐enhanced Raman scattering (SERS) measurements. In this study, we used the sputter deposition technique to cover tubular arrays of Al2O3 and TiO2 with Ag nanoparticles. Raman spectra of pyridine (as a probe molecule) and of two selected dyes (5‐(4‐dimethylaminobenzylidene)rhodanine and 5‐(4‐(dimethylamino)benzylidene)‐3‐(3‐methoxypropyl)rhodanine) adsorbed on fabricated Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al substrates were measured. We found that the SERS spectra of pyridine adsorbed on Ag nanoparticles deposited on an Al2O3‐n/Al substrate are distinctly different from those measured for an Ag/TiO2‐n/Ti composite. Similar effects were observed for dyes adsorbed on the surface of both composites. The spectral differences between two kinds of composites (Ag/TiO2‐n/Ti and Ag/Al2O3‐n/Al) are discussed in terms of (1) the modified electronic structure of the Ag nanoparticles due to their interaction with different substrate materials and (2) the different atomic topology of the metal particles thus deposited on the surfaces of the substrates. Composite samples were also studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号