首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, amorphous and crystalline TiO2 films were synthesized by the sol–gel process at room temperature. The TiO2 films were doped with gold nanoparticles. The films were spin-coated on glass wafers. The crystalline samples were annealed at 100°C for 30 minutes and sintered at 520°C for 2 h. All films were characterized using X-ray diffraction, transmission electronic microscopy and UV-Vis absorption spectroscopy. Two crystalline phases, anatase and rutile, were formed in the matrix TiO2 and TiO2/Au. An absorption peak was located at 570 nm (amorphous) and 645 nm (anatase). Photoconductivity studies were performed on these films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Crystalline TiO2/Au films are more photoconductive than the amorphous ones.  相似文献   

2.
Nanostructured TiO2 thin films have been prepared through chemical route using sol-gel and spin coating techniques. The deposited films were annealed in the temperature range 400–1000°C for 1 h. The structure and microstructure of the annealed films were characterized by GAXRD, micro-Raman spectroscopy and AFM. The as-deposited TiO2 thin films are found to be amorphous. Micro-Raman and GAXRD results confirm the presence of the anatase phase and absence of the rutile phase for films annealed up to 700°C. The diffraction pattern of the film annealed at 800 to 1000°C contains peaks of both anatase and rutile reflections. The intensity of all peaks in micro-Raman and GAXRD patterns increased and their width (FWHM) decreased with increasing annealing temperature, demonstrating the improvement in the crystallinity of the annealed films. Phase transformation at higher annealing temperature involves a competition among three events such as: grain growth of anatase phase, conversion of anatase to rutile and grain growth of rutile phase. AFM image of the asdeposited films and annealed films indicated exponential grain growth at higher temperature.   相似文献   

3.
分别在HF水溶液、含NH4F和H2O的乙二醇有机溶液中对Ti箔进行阳极氧化,得到TiO2纳米管阵列结构.该结构高度有序、分布均匀、垂直取向,且通过阳极氧化工艺条件(如阳极氧化电压、电解液的选择与配比以及氧化时间等)可实现对其结构参数(如管径、管壁厚度、管密度、管长等)的有效控制.利用XRD研究了TiO2纳米管阵列的物相结构.结果表明:退火前的TiO2纳米管阵列为无定形结构;分别在真空和氧气氛中50 关键词: 2纳米管阵列')" href="#">TiO2纳米管阵列 阳极氧化 可控生长  相似文献   

4.
TiO2 nanoparticles have been prepared by simple chemical precipitation method and annealed at different temperatures. The as-prepared TiO2 are amorphous, and they transform into anatase phase on annealing at 450 °C, and rutile phase on annealing at 900 °C. The X-ray diffraction results showed that TiO2 nanoparticles with grain size in the range of 21–24 nm for anatase phase and 69–74 nm for rutile phase have been obtained. FESEM images show the formation of TiO2 nanoparticles with small size in structure. The FTIR and Raman spectra exhibited peaks corresponding to the anatase and rutile structure phases of TiO2. Optical absorption studies reveal that the absorption edge shifts towards longer wavelength (red shift) with increase of annealing temperature.  相似文献   

5.
TiO2 nanotubes (NTs) were prepared by low-temperature chemical synthesis using anatase TiO2 particles with different crystallite sizes in a NaOH solution followed by water washing and HCl neutralization. The synthesized TiO2 NTs showed diverse morphologies depending on the starting materials. The crystallite size of TiO2 raw materials increased with an increase in annealing temperature, and larger TiO2 NTs, around 31 nm in diameter, were obtained from large raw powder with a crystallite size of 117 nm. X-ray diffraction and Raman spectroscopy revealed that the obtained TiO2 NT exhibited lower crystallinity; however, Raman vibration seems to be more likely than a rutile structure.  相似文献   

6.
Highly ordered titanium oxide (TiO2) nanotubes were prepared by electrolytic anodization of titanium electrodes. Morphological evolution and phase transformations of TiO2 nanotubes on a Ti substrate and that of freestanding TiO2 membranes during the calcinations process were studied by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction microscopy. The detailed results and mechanisms on the morphology and crystalline structure were presented. Our results show that a compact layer exists between the tubular layer and Ti substrate at 600 °C, and the length of the nanotubes shortens dramatically at 750 °C. The freestanding membranes have many particles on their tubes during calcinations from 450 to 900 °C. The TiO2 nanotubes on the Ti substrate transform to rutile crystals at 600 °C, while the freestanding TiO2 membranes retain an anatase crystal with increasing temperature to 800 °C. The photocatalytic activity of TiO2 nanotubes on a Ti substrate annealed at different temperatures was investigated by the degradation of methyl orange in aqueous solution under UV light irradiation. Due to the anatase crystals in the tubular layer and rutile crystals in the compact layer, TiO2 nanotubes annealed at 450 °C with pure anatase crystals have a better photocatalytic activity than those annealed at 600 °C or 750 °C.  相似文献   

7.
CdS quantum dot (Qd)-sensitized TiO2 nanotube array photoelectrode is synthesised via a two-step method on tin-doped In2O3-coated (ITO) glass substrate. TiO2 nanotube arrays are prepared in the ethylene glycol electrolyte solution by anodizing titanium films which are deposited on ITO glass substrate by radio frequency sputtering. Then, the CdS Qds are deposited on the nanotubes by successive ionic layer adsorption and reaction technique. The resulting nanotube arrays are characterized by scanning electron microscopy, X-ray diffraction (XRD) and UV–visible absorption spectroscopy. The length of the obtained nanotubes reaches 1.60 μm and their inner diameter and wall thickness are around 90 and 20 nm, respectively. The XRD results show that the as-prepared TiO2 nanotubes array is amorphous, which are converted to anatase TiO2 after annealed at 450 °C for 2 h. The CdS Qds deposited on the TiO2 nanotubes shift the absorption edge of TiO2 from 388 to 494 nm. The results show that the CdS-sensitized TiO2 nanotubes array film can be used as the photoelectrode for solar cells.  相似文献   

8.
TiO2 nanoparticles are prepared by a sol–gel method and annealed both in air and vacuum at different temperatures to obtain anatase, anatase–rutile mixed phase and rutile TiO2 nanoparticles. The phase conversion from anatase to anatase–rutile mixed phase and to rutile phase takes place via interface nucleation between adjoint anatase nanocrystallites and annealing temperature and defects take the initiate in this phase transformation. The samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis and photoluminescence spectroscopy (PL). Anatase TiO2 exhibits a defect related absorption hump in the visible region, which is otherwise absent in the air annealed samples. The Urbach energy is very high in the vacuum annealed and in the anatase–rutile mixed phase TiO2. Vacuum annealed anatase TiO2 has the lowest emission intensity, whereas an intense emission is seen in its air annealed counterpart. The oxygen vacancies in the vacuum annealed samples act as non-radiative recombination centers and quench the emission intensity. Oxygen deficient anatase TiO2 has the longest carrier lifetime. Time resolved spectroscopy measurement shows that the oxygen vacancies act as efficient trap centers of electrons and reduce the recombination time of the charge carriers.  相似文献   

9.
In the present work anatase–rutile transformation temperature and its effect on physical/chemical properties as well as photocatalytic activity of TiO2 particles were investigated. The characterisation of the synthesised and annealed TiO2 particles were determined by X-Ray Powder Diffraction (XRD), scanning electron microscope (SEM), dynamic light scattering (DLS) and Brunauer–Emmett–Teller surface area analysis (BET). The refraction in the ultraviolet–visible (UV–vis) range was assessed using a dual-beam spectrophotometer. The photocatalytic performance of the particles was tested on methylene blue solution. The XRD data indicated that the percentage of rutile increased with the annealing temperature and almost 100% of anatase transformed to rutile at 1000 °C. In addition, the phase transformation was a linear function of annealing temperature so phase composition of TiO2 can be controlled by changing the annealing temperature. The SEM and BET results presented the increase of agglomerate size and the decrease of specific surface area with the increasing annealing temperature. This proved that anatase has smaller particle size and higher surface area than rutile. The photocatalytic activity of the annealed TiO2 powders reduced with the increase of annealing temperature. The samples annealed at 900 °C and 925 °C with anatase: rutile ratio of 92:8 and 77:23, respectively, showed the best activity. These results suggested that the photocatalytic activity of TiO2 particles is a function of phase composition. Thus it can be enhanced by changing its phase composition which can be controlled by annealing temperature.  相似文献   

10.
In order to study the effect of the TiO2 particle crystalline composition (with different proportions of rutile and anatase crystals) on the dielectric properties of the composite, titanium dioxide (TiO2) particles and TiO2/poly(vinylidene fluoride‐co‐trifluoroethylene) [P(VDF‐TrFE)] composites were synthesized by a reflux method and the solution route, respectively. The results indicated that the optimum TiO2 particle crystalline composition is anatase content of 37% and rutile content of 63% for dielectric‐constant modifier applications. Furthermore, a dielectric constant of 25.7 with dielectric loss of 0.17 at 100 Hz at room temperature were obtained in the composite with 40 wt% TiO2 particles. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Titania nanotubes were prepared using a hydrothermal method. Hydrogen titanate nanotubes (H-TNTs) with an anatase phase changed to anatase nanocrystals at about 500 °C, and then a rutile structure at ∼800 °C. A sharp and symmetrical electron spin resonance (ESR) signal (g=2.003), attributed to a single-electron-trapped oxygen-vacancy (SETOV), was obtained at the annealed H-TNTs (T<500 °C). The SETOV signal increased and maximized remarkably at about 400–500 °C. Then, the nanotube structure appeared to be demolished. Yet, when the vacuum-heated H-TNTs were sealed in N2 or Ar ambient, some additional ESR signals appeared besides the SETOV signal. The broad asymmetric ESR signal (g=1.98) was attributed to a surface oxygen vacancy related to the Ti3+ sites in a reduced TiO2 matrix. The vacuum-heated sodium titanate nanotubes (Na-TNTs) showed only the SETOV signal (T<500 °C). PACS 61.46.Fg; 61.72.Ji; 76.30.-v  相似文献   

12.
The Raman spectroscopy method was used for structural characterization of TiO2 thin films prepared by atomic layer deposition (ALD) and pulsed laser deposition (PLD) on fused silica and single-crystal silicon and sapphire substrates. Using ALD, anatase thin films were grown on silica and silicon substrates at temperatures 125–425 °C. At higher deposition temperatures, mixed anatase and rutile phases grew on these substrates. Post-growth annealing resulted in anatase-to-rutile phase transitions at 750 °C in the case of pure anatase films. The films that contained chlorine residues and were amorphous in their as-grown stage transformed into anatase phase at 400 °C and retained this phase even after annealing at 900 °C. On single crystal sapphire substrates, phase-pure rutile films were obtained by ALD at 425 °C and higher temperatures without additional annealing. Thin films that predominantly contained brookite phase were grown by PLD on silica substrates using rutile as a starting material.  相似文献   

13.
Silica nanowires, grown via the active oxidation of a silicon substrate, have been coated with TiO2 using two coating methods: solution-based deposition of Ti-alkoxides and atomic layer deposition. Analysis of as-deposited and annealed films shows that it is possible to produce stable conformal coatings of either the anatase or rutile phases of TiO2 on nanowires with diameters greater than 100 nm when annealed between 500–600°C and 800–900°C, respectively, with annealing at higher temperatures (1050°C) producing coatings with a highly facetted rutile morphology. The efficacy of the process is shown to depend on nanowire diameter, with nanowires having diameters less than about 100 nm fusing together during solution-based coating and decomposing during TiO2 atomic layer deposition. The use of a suitable buffer layer is shown to be an effective means of minimizing nanowire decomposition. Finally, annealing coated nanowires under active oxidation conditions (1100°C) is shown to be an effective technique for depositing additional conformal SiO x coatings, thereby providing a means of fabricating multi-layered coaxial nanostructures.  相似文献   

14.
The highly ordered TiO2 nanotube arrays were fabricated by potentiostatic anodization of Ti foils in fluorinated dimethyl sulfoxide (DMSO). TiO2 nanotube arrays are formed using a 40 V anodization potential for 24 h, with a length of 12 μm, diameter of 170 nm and aspect ration of about 70. The as-prepared nanotubes are amorphous, but can be crystallized as the heat treatment temperature increases. Anatase phase appears at a temperature of about 300 °C, then transforms to rutile phase at about 600 °C. After heat treatment at 500 °C and soaking in SBF for 14d, a thick apatite layer of about 13 μm covers the whole surface of TiO2 nanotube arrays, indicating their excellent in vitro bioactivity, which is mainly attributed to their high specific surface area and the anatase phase.  相似文献   

15.
We report on the photoelectrochemical and terahertz measurements, of the charge transport properties of 1 μm thick self‐organized TiO2 nanotube layers, prepared by the anodization of titanium. We provide evidence regarding the complexity of electron transport, and dynamics in the nanotubes. Shortly after photoexcitation, charge mobilites in amorphous and crystalline nanotubes are similar, but still lower compared to the bulk anatase. The mobility subsequently decreases due to trapping‐detrapping processes. The recombination rate in anatase nanotubes is much slower than in the amorphous ones, enabling the material to reach an internal photon to electron conversion efficiency exceeding 60%.  相似文献   

16.
Gang Li  Jing Lu 《Applied Surface Science》2009,255(16):7323-7328
Well-ordered TiO2 nanotube arrays were prepared by electrochemical anodization of titanium in aqueous electrolyte solution of H3PO4 + NH4F at a constant voltage of 20 V for 3 h, followed by calcined at various temperatures. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) were used to characterize the samples. The results showed that the as-prepared nanotube arrays before being calcined were amorphous and could transform to anatase phase at a heat treatment temperature higher than 400 °C. As the calcination temperatures increased, crystallization of anatase phase enhanced and rutile phase appeared at 600 °C. However, further increasing the calcination temperature would cause the collapse of nanotube arrays. PL intensity of the nanotube arrays annealed at 500 °C was the lowest, which was probably ascribed to better crystallization together with fewer surface defects of the nanotube arrays.  相似文献   

17.
We report on dye‐sensitization of different TiO2 nanotube layers, their photoelectrochemical response and their efficiency for solar energy conversion. The tubes compared in this study were either grown by controlled Ti anodization in fluoride containing electrolytes or by rapid breakdown anodization (RBA) of Ti in fluoride free electrolytes. After converting the different tube layers to anatase and sensitizing with Ru‐dye (N719), clearly layers consisting of RBA‐NTs show a significantly higher photoresponse and conversion efficiencies than tubes formed under self‐ordering conditions. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The effects of atmospheric air and argon environments on thermal-induced phase transformations in electrospun TiO2 nanofibers have been investigated in situ using synchrotron radiation diffraction. Diffraction results showed that the as-synthesized TiO2 nanofibers were initially amorphous, but crystallized to form anatase and rutile after thermal annealing in air or argon at elevated temperatures. The crystallization temperature of anatase was delayed by 100 °C in argon relative to in air, and the transformation of anatase into rutile occurs faster in argon atmosphere than in air due to the formation of oxygen vacancies. Non-linear strains formed in both polymorphs and the substantial elevation of rutile thermal expansion pointed to strain anisotropy in the rutile phase and the concomitant fibre breakage.  相似文献   

19.
Pure anatase is a metastable phase and inclined to (transform) be transformed into rutile structure under heating over than 500 °C, which limits its suitability for high-temperature applications. Hitherto much research efforts have been made to increase the stability temperature of anatase structure. However, metallic doping usually introduced metallic oxides into titania at high temperature, and many nonmetallic doping are not competent for increasing the stability temperature of anatase structure up to 900 °C. In this study, F-doped anatase TiO2 nanoparticles were conveniently prepared via the alcoholysis of TiCl4 and the as-prepared product shows very high stability temperature up to 1000 °C before being transformed into rutile structure phase. On the basis of XPS results of F-doped titania annealed at different temperature, it is learned that the F atoms were anchored on the crystal planes of anatase in favor of decreasing the energy faces of anatase and stabilizing the anatase structure till annealed at 1300 °C all the anatase were transformed into rutile phase.  相似文献   

20.
Ru thin films were grown on polymorphic TiO2 thin film substrates at 230 and 250 °C by atomic layer deposition using 2,4-(dimethylpentadienyl)(ethylcyclopentadienyl)Ru and an O2 gas. While the Ru films grown on amorphous and rutile TiO2 substrates showed a relatively long incubation cycle number of approximately 350 and 100 at 230 and 250 °C, respectively, the Ru films grown on anatase TiO2 substrates exhibited a significantly shorter incubation delay which was attributed to the catalytic activity of anatase TiO2. This difference in the incubation cycle affected the surface morphology of the Ru films on different TiO2 substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号