首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strong two‐photon absorption (TPA) in monolayer MoS2 is demonstrated in contrast to saturable absorption (SA) in multilayer MoS2 under the excitation of femtosecond laser pulses in the near‐infrared region. MoS2 in the forms of monolayer single crystal and multilayer triangular islands are grown on either quartz or SiO2/Si by employing the seeding method through chemical vapor deposition. The nonlinear transmission measurements reveal that monolayer MoS2 possesses a nonsaturation TPA coefficient as high as ∼(7.62 ±0.15) ×103 cm/GW, larger than that of conventional semiconductors by a factor of 103. As a result of TPA, two‐photon pumped frequency upconverted luminescence is observed directly in the monolayer MoS2. For the multilayer MoS2, the SA response is demonstrated with the ratio of the excited‐state absorption cross section to ground‐state cross section of ∼0.18. In addition, the laser damage threshold of the monolayer MoS2 is ∼97 GW/cm2, larger than that of the multilayer MoS2 of ∼78 GW/cm2.

  相似文献   


2.
We present a photoluminescence study of single‐layer MoS2 flakes on SiO2 surfaces. We demonstrate that the luminescence peak position of flakes prepared from natural MoS2, which varies by up to 25 meV between individual flakes, can be homogenized by annealing in vacuum. We use HfO2 and Al2O3 layers prepared by atomic layer deposition to cover some of our flakes. In these flakes, we observe a suppression of the low‐energy luminescence peak which appears in asprepared flakes at low temperatures. We infer that this peak originates from excitons bound to surface adsorbates. We also observe different temperature‐induced shifts of the luminescence peaks for the oxide‐covered flakes. This effect stems from the different thermal expansion coefficients of the oxide layers and the MoS2 flakes. It indicates that the single‐layer MoS2 flakes strongly adhere to the oxide layers and are therefore strained. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
4.
Semipolar (11\bar 2 \bar 2) ZnO was successfully grown on (112) LaAlO3/(LaAlO3)0.29(Sr2AlTaO6)0.35 substrate by pulsed laser deposition. The epitaxial relationship is [11\bar 23]_{\rm ZnO} // [11\bar 1]_{\rm LAO/LSAT} with the polar axis of [000\bar 1]_{\rm ZnO} pointing to the surface. For ZnO films with thickness of 1.6 μm, the threading dislocation density is ~1 × 109 cm–2, and the density of basal stacking faults is below 1 × 104 cm–1. The (11\bar 2 \bar 2) ZnO exhibits strong D0X emissions with a FWHM of 9 meV and very few green–yellow emissions in the low‐temperature (10 K) and room‐temperature photoluminescence spectra, respectively.

  相似文献   


5.
In this letter, we report on the fluorescence lifetime imaging and accompanying photoluminescence properties of a chemical vapour deposition (CVD) grown atomically thin material, MoS2. µ‐Raman, µ‐photoluminescence (PL) and fluorescence lifetime imaging microscopy (FLIM) are utilized to probe the fluorescence lifetime and photoluminescence properties of individual flakes of MoS2 films. Usage of these three techniques allows identification of the grown layers, grain boundaries, structural defects and their relative effects on the PL and fluorescence lifetime spectra. Our investigation on individual monolayer flakes reveals a clear increase of the fluorescence lifetime from 0.3 ns to 0.45 ns at the edges with respect to interior region. On the other hand, investigation of the film layer reveals quenching of PL intensity and lifetime at the grain boundaries. These results could be important for applications where the activity of edges is important such as in photocatalytic water splitting. Finally, it has been demonstrated that PL mapping and FLIM are viable techniques for the investigation of the grain‐boundaries.

  相似文献   


6.
《Current Applied Physics》2018,18(12):1577-1582
While controlling the cation contents in perovskite rare-earth nickelate thin films, a metal-to-insulator phase transition is reported. Systematic control of cation stoichiometry has been achieved by manipulating the irradiation of excimer laser in pulsed laser deposition. Two rare-earth nickelate bilayer thin-film heterostructures with the controlled cation stoichiometry (i.e. stoichiometric and Ni-excessive) have been fabricated. It is found that the Ni-excessive nickelate film is structurally less dense than the stoichiometric film, albeit both of them are epitaxial and coherent with respect to the underlying substrate. More interestingly, as a temperature decreases, a metal-to-insulator transition is only observed in the Ni-excessive nickelate films, which can be associated with the enhanced disproportionation of the Ni charge valence. Based on our theoretical results, possible origins (e.g. anti-site defects) of the low-temperature insulating state are discussed with the need of future work for deeper understanding. Our work can be utilized to realize unusual physical phenomena (e.g. metal-to-insulator phase transitions) in complex oxide films by manipulating the chemical stoichiometry in pulsed laser deposition.  相似文献   

7.
Jia-Jun Ma 《中国物理 B》2022,31(8):88105-088105
We report a novel two-step ambient pressure chemical vapor deposition (CVD) pathway to grow high-quality MoS2 monolayer on the SiO2 substrate with large crystal size up to 110 μm. The large specific surface area of the pre-synthesized MoO3 flakes on the mica substrate compared to MoO3 powder could dramatically reduce the consumption of the Mo source. The electronic information inferred from the four-probe scanning tunneling microscope (4P-STM) image explains the threshold voltage variations and the n-type behavior observed in the two-terminal transport measurements. Furthermore, the direct van der Pauw transport also confirms its relatively high carrier mobility. Our study provides a reliable method to synthesize high-quality MoS2 monolayer, which is confirmed by the direct 4P-STM measurement results. Such methodology is a key step toward the large-scale growth of transition metal dichalcogenides (TMDs) on the SiO2 substrate and is essential to further development of the TMDs-related integrated devices.  相似文献   

8.
We report a simple and effective way of fabricating molybdenum disulfide (MoS2) nanoscrolls by self‐rolling up fractured monolayer CVD‐grown MoS2 microflakes. Morphological results reveal that MoS2 nanoscrolls are formed only at newly formed edges, owing to an orientation‐specific fracture behavior. Using Raman spectroscopy, we show that the E12g Raman peak (A1g peak) for MoS2 nanoscrolls significantly red‐shifts (blue‐shifts), indicating structural change. The proposed mechanism is that the newly formed edges induced by fracture behavior self‐roll up to nanoscrolls to minimize the surface free energy, meanwhile, the serious lattice contradiction of upper sulfur plane controls the rolling directions. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
10.
A comparative study of the substrate effect on the growth mechanism of chalcogenide Bi2Te3 and Sb2Te3 thin films was carried out. Obvious microstructural discrepancy in both the as‐deposited Bi2Te3 and Sb2Te3 thin films was observed when grown on graphene or SiO2/Si substrate. Bi2Te3 and Sb2Te3 thin films deposited on the graphene substrate were observed to be grown epitaxially along c‐axis and show very smooth surface compared to that on SiO2/Si substrate. Based on the experimental results of this study, the initial adsorption sites on graphene substrate during deposition process, which had been discussed theoretically, could be demonstrated empirically.  相似文献   

11.
12.
Nanoparticles of indomethacin (IM), a sparingly soluble drug in water, were prepared by pulsed laser deposition with Nd: YAG laser at 1064 nm. Variation of the deposition rate (DR) with various experimental conditions, such as species and pressure of the background gas, and laser fluence, was discussed. We obtained highest DR, 2.7 g/cm2min, under He at 100 Pa with the laser fluence of 25 J/cm2. In the deposited solid product, no trace of drug decomposition was observed by HPLC. Deposition of IM nanoparticles was achieved on the fluidized excipient, potato starch particles of 20 m regime. By TEM observation and zeta potential distribution measurement, we confirmed that surface of excipient particles was fully covered by nanoparticles of IM. Thus, the present method enables us a new method of one-step preparation of drug-excipient nanocomposites to eliminate tedious problems associated with nanoparticles handling.  相似文献   

13.
We propose a physical model based on disordered (a hole punched inside a material) monolayer transition metal dichalcogenides (TMDs) to demonstrate a large‐gap quantum valley Hall insulator. We find an emergence of bound states lying inside the bulk gap of the TMDs. They are strongly affected by spin–valley coupling, rest‐ and kinetic‐mass terms and the hole size. In addition, in the whole range of the hole size, at least two in‐gap bound states with opposite angular momentum, circulating around the edge of the hole, exist.Their topological insulator (TI) feature is analyzed by the Chern number, characterized by spacial distribution of their probabilities and confirmed by energy dispersion curves (energy vs. angular momentum). It not only sheds light on overcoming low‐temperature operating limitation of existing narrow‐gap TIs, but also opens an opportunity to realize valley‐ and spin‐qubits. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

14.
Nanostructured deposits of TiO2 were grown on Si (1 0 0) substrates by laser ablating a TiO2 sintered target in vacuum or in oxygen using a Ti:sapphire laser delivering 80 fs pulses. The effect of the laser irradiation wavelength on the obtained nanostructures, was investigated using 800, 400 and 266 nm at different substrate temperatures and pressures of oxygen. The composition of the deposits was characterized using X-ray photoelectron spectroscopy (XPS) and the surface morphology was studied by environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM). Deposits are absent of microscopic droplets in all conditions explored. The best deposits, constituted by nanoparticles of an average diameter of 30 nm with a narrow size distribution, were obtained at the shorter laser wavelength of 266 nm under vacuum at substrate room temperature.  相似文献   

15.
Well crystallized and homogeneous LiFePO4/C (LFPO) thin films have been grown by pulsed laser deposition (PLD). The targets were prepared by the sol-gel process at 600 °C. The structure of the polycrystalline powders was analyzed with X-ray powder diffraction (XRD) data. The XRD patterns were indexed having a single phase olivine structure (Pnma). LFPO thin films have been deposited on three different substrates: aluminum (Al), stainless steel (SS) and silicon (Si) by pulsed laser deposition (PLD). The structure of the films was analyzed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). It is found that the crystallinity of the thin films depends on the substrate temperature which was set at 500 °C. When annealed treatments were used, secondary phases were found, so, one step depositions at 500 °C were made.Stainless steel is demonstrated to be the best choice to act as substrate for phosphate deposition. LiFePO4 thin films grown on stainless steel plates exhibited the presence of carbon, inducing a slight conductivity enhancement that makes these films promising candidates as one step produced cathodes in Li-ion microbatteries.  相似文献   

16.
Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca10(PO4)6(OH)2, or bioglasses in the system SiO2-Na2O-K2O-CaO-MgO-P2O5 with SiO2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* (λ = 248 nm, τ > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H2O vapors, while the bioglass layers were deposited in O2. Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications.  相似文献   

17.
Transparent conducting ZnMgO:Ga films were deposited on flexible PET substrates by pulsed laser deposition (PLD). Effects of deposition pressure and time on the structural, electrical and optical properties of ZnMgO:Ga films were investigated. The films showed a low resistivity about 7.68 × 10−4 Ω cm when deposited at the pressure of 0.03 Pa for 40 min. All the films exhibited a high transmittance over 80% in the visible and near-ultraviolet region. The band gap of as-grown films was about 3.50 eV.  相似文献   

18.
19.
脉冲激光制膜过程中等离子体演化规律的研究   总被引:6,自引:0,他引:6       下载免费PDF全文
利用有限差分法对脉冲激光沉积(PLD)技术制备KTa065Nb035O3(KTN)薄膜过程中等离子体在等温和绝热两个阶段的速度演化进行了模拟,并给出了其中主要粒子在空间的具体演化规律,对等离子体在空间膨胀的物理机制,进行了深入的讨论,给出了相应演化过程的物理图像,并揭示了等离子体羽辉在膨胀过程中呈现椭球外形的内在原因.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号