首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The infrared spectra (4000–400 cm– 1) of solid and the Raman spectra (3500–30 cm– 1) of liquid and solid 1-nitropropane, CH3CH2CH2NO2, have been registered. Both the trans and gauche conformers have been identified in the fluid phase, while the trans form remains in the stable solid. Temperature dependence (190–230K) of the liquid 1-nitropropane Raman spectra has been carried out. From these data, the enthalpy difference was determined to be 870 ± 105 J-mol–1, with the gauche conformer being the more stable rotamer. Ab initio and DFT calculations at different levels of approximation (HF, MP2, B3LYP, B3PW91) gave optimized geometries, harmonic force fields, and vibrational frequencies for the trans and gauche conformers. All the calculations (except the B3PW91/6-31G* level) predicted gauche as the low-energy conformer. Theoretical force constants are analyzed for formulating constraints in the molecular force field model of 1-nitropropane.  相似文献   

2.
Abstract

The infrared absorption spectrum of monomeric 2-methylmercaptoethanol in dilute CC14, solution exhibits four overlapped bands in the fundamental OH stretching region. The individual band components were resolved using digital computing techniques [1], and the relative band intensities are temperature dependent. The “free” OH bands at 3634 and 3623 cm correspond to gauche and trans orientations about the C-O bond, respectively, by analogy with similar band components in the infrared spectrum of ethanol in dilute CC14, solution. The OH bands at 3539 and 3446 cm?1 are assigned to gGt and gGg1 conformers, respectively, each involving an intramolecular OH···S hydrogen bond (conformer notation refers to the orientation about the C-O, C-C and C-S(CH3) bonds, respectively). A similar interpretation of the matrix isolated infrared spectra of ethylene glycol, involving two conformers with intramolecular OH···O hydrogen bonds and differing principally in the orientation of the proton-acceptor OH group, has been presented recently [2]. The microwave spectrum of 2-mercaptoethanol in the vapour phase arises from an all-gauche conformation with an intramolecular OH···S hydrogen bond [3].  相似文献   

3.
The infrared (3500-20 cm−1) and Raman (3200-10 cm−1) spectra have been recorded for gaseous and solid chloroacetone (1-chloro-2-propanone), CH2ClC(O)CH3. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. These data have been interpreted on the basis that the molecule exists predominantly in a gauche conformation having a “near cis” structure of C1 symmetry (dih ClCCO=142°C) in the vapor but for the liquid a second conformer having a trans structure (chlorine atom oriented trans to the methyl group) with Cs point group symmetry is present. From a study of the Raman spectrum of the liquid at variable temperatures, the trans conformation has been determined to be more stable than the gauche form by 1042±203 cm−1 (2.98±0.6 kcal mol−1 and is the only conformer present in the spectrum of the annealed solid. From ab initio calculations at the 3-21G* and 6-31G* basis set levels optimized geometries for both the gauche and trans conformers have been obtained and the potential surfaces governing internal rotation of the symmetric and asymmetric rotors have been obtained. The observed vibrational frequencies and assignments to the fundamental vibrations for both the gauche and trans conformers are compared to those calculated with the 3-21G* basis set. The results are discussed and compared with the corresponding quantities obtained for some similar molecules.  相似文献   

4.
Methoxyphosphinidene oxide (CH3OPO) and isomeric methyldioxophosphorane (CH3PO2) are key intermediates in the degradation of organophosphorus compounds (OPCs). Unlike the nitrogen analogues CH3ONO and CH3NO2, the experimental data for these two prototypical OPCs are scarce. By high‐vacuum flash pyrolysis (HVFP) of the diazide CH3OP(O)(N3)2 at 1000 K, the cis and trans conformers of CH3OPO have been generated in the gas phase and subsequently isolated in cryogenic Ar and N2 matrices for IR spectroscopic characterization. Upon 266 nm laser irradiation of CH3OPO, cis→trans conformational conversion occurs with concurrent isomerization to CH3PO2. The spectroscopic identification of CH3OPO and CH3PO2 is supported by D‐, 13C‐, and 18O‐isotope labeling and quantum chemical calculations at the CCSD(T)‐F12a/cc‐pVTZ‐F12 level using configuration‐selective vibrational configuration interaction (VCI).  相似文献   

5.
The i.r. (4000-40 cm−1) and Raman (4000-10 cm−1) spectra of gaseous, liquid and solid methoxy difluorophosphinoxide, CH3OP(O)F2, and the deuterated analog have been recorded. Results obtained from variable solvent and matrix isolation studies are consistent with the existence of both trans (CO bond trans to the PO bond) and gauche (dihedral angle approximately 120° from the trans form) conformers in the fluid phases. From simulations of observed gas phase i.r. band profiles, it was possible for assignments to be made to the individual conformers for a number of the fundamentals. Variable temperature studies carried out for the gaseous and liquid phases give energy differences between the gauche and trans conformers of 451 ± 100 cm−1 (1.29 ± 0.3 kcal/mol) and 69 ± 20 cm−1 (197 ± 57 cal/mol), respectively. Furthermore, these data are consistent with the gauche form being the thermodynamically preferred conformer for the gas phase whereas the trans conformer is preferred in the liquid phase and the only conformer present in the annealed solid. The methoxy torsional mode of the gauche conformer has been assigned to a very strong band observed in the far i.r. spectrum of the gas phase at 42 cm−1. The matrix isolation spectra of the normal compound in Ar, CO and N2 matrices indicated no changes in the conformational equilibrium among these different matrices and this equilibrium remains unchanged upon annealing the matrices.  相似文献   

6.
The purpose of this article was to calculate the structures and energetics of CH3O(H2O)n and CH3S(H2O)n in the gas phase; the maximum number of water molecules that can directly interact with the O of CH3O; and when n is larger, we asked how the CH3O and CH3S moiety of CH3O(H2O)n and CH3S(H2O)n changes and how we can reproduce experimental ΔH 0n−1, n. Using the ab initio closed-shell self-consistent field method with the energy gradient technique, we carried out full geometry optimizations with the MP2/aug-cc-pVDZ for CH3O(H2O)n (n=0, 1, 2, 3) and the MP2/6–31+G(d,p) (for n=5, 6). The structures of CH3S(H2O)n (n=0, 1, 2, 3) were fully optimized using MP2/6–31++G(2d,2p). It is predicted that the CH3O(H2O)6 does not exist. We also performed vibrational analysis for all clusters [except CH3O(H2O)6] at the optimized structures to confirm that all vibrational frequencies are real. Those clusters have all real vibrational frequencies and correspond to equilibrium structures. The results show that the above maximum number of water molecules for CH3O is five in the gas phase. For CH3O(H2O)n, when n becomes larger, the C—O bond length becomes longer, the C—H bond lengths become smaller, the HCO bond angles become smaller, the charge on the hydrogen of CH3 becomes more positive, and these values of CH3O(H2O)n approach the corresponding values of CH3OH with the n increment. The C—O bond length of CH3O(H2O)3 is longer than the C—O bond length of CH3O in the gas phase by 0.044 Å at the MP2/aug-cc-pVDZ level of theory. The structure of the CH3S moiety in CH3S(H2O)n does not change with the n increment. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1138–1144, 1999  相似文献   

7.
The geometric structure of dimethyl malonate, CH3OC(O)-CH2-C(O)OCH3, was studied by gas electron diffraction (GED) and quantum chemical methods. We conclude that only diketo conformers exist in the gas phase. According to the GED refinement, a mixture of two diketo conformers is present: 69(10)% (ac,ac) conformer with C2 symmetry (both CO bonds anticlinal relative to the opposite C-C bond) and 31(10)% (sp,ac) conformer with C1 symmetry (one CO bond with synperiplanar, the other CO bond with anticlinal orientation). Ab initio calculations, however, predict a preference of the (sp,ac) conformer rather than the (ac,ac) form.  相似文献   

8.
Scaled quantum-mechanical force field (SQM-FF) vibrational analyses at the HF/6-31G//HF/6-31G computational level of the gauche, Trans,trans,Trans,trans-, gauche,Trans,trans,Cis,trans-, trans,Trans,gauche,Trans,trans-, and trans,Cis,trans,Trans,trans-conformers of octa-1,3,5,7-tetraene were used to identify the rotational isomer observed in the one-photon excitation fluorescence spectrum of this conjugated molecule (Ackerman et al. in J Chem Phys 80:39–44, 1984) as the gauche,Trans,trans,Trans,trans (gTtTt)-conformer. The analysis was performed by comparing the RMS deviations of the 14 fundamental wavenumbers assigned to the high-energy conformer of octa-1,3,5,7-tetraene in the fluorescence spectrum with those calculated for these conformers. Some reassignments of the wavenumbers, originally suggested by experimental observations, were required for the current analysis. The non-planar structure of gTtTt-octa-1,3,5,7-tetraene was calculated to have the terminal –CH=CH2 moiety rotated by ~30.5° with respect to the remainder of the nearly planar skeleton using both the HF/6-31G and MP2(FC)/aug-cc-pVDZ computational levels. The barriers to rotation of the –CH=CH2 moiety at the MP2(FC)/aug-cc-pVDZ level were as follows: rotation from the lowest-energy planar all-trans conformer to the non-planar gTtTt-conformer was 31.4 kJ/mol; rotation from the gTtTt-conformer to the planar all-trans conformer was 18.0 kJ/mol; and the barrier between the two equivalent gTtTt-octa-1,3,5,7-tetraene conformers was only 1.4 kJ/mol.  相似文献   

9.
A multipass cell with an optical path up to 120 m long was used to measure the vibronic absorption spectra of 2-methylpropanal-h1 (MPA-h1, (CH3)2CHCHO)) and 2-methylpropanal-d1 (MPA-d1, (CH3)2CHCDO)) over the frequency range 28200–31600 cm−1. The most intense spectral lines were assigned to transitions from vibrational levels of the cis and gauche MPA-h1 and MPA-d1 conformers in the ground electronic state (S 0) to vibrational levels of conformers 1 and 3 in the lowest singlet excited electronic state (S 1). According to our estimates, the origins (0 0 0 ) of the 1 S 1) ← cis(S 0) and 3(S 1) ← cis(S 0) and also 1(S 1) ← gauche(S 0) and 3(S 1) ← gauche(S 0) electronic transitions were situated at 29147 and 29177, 29391 and 29417 cm−1, respectively, for MPA-h1 and at 29226 and 29240, 29480 and 29500 cm−1 for MPA-d1. The structure of conformers 1 and 3 in the S 1 state was shown to differ from the structure of the cis and gauche conformers in the S 0 state by the angle of rotation of the (CH3)2CH-isopropyl top and “pyramidal distortion” of the CCHO/CCDO carbonyl fragment. A series of fundamental frequencies of MPA conformers in different electronic states were found. The potential functions of inversion were determined for the conformer 1-conformer 3 pairs of MPA-h1 and MPA-d1 from the experimental energy levels of inversion vibrations. The potential barriers to inversion and equilibrium displacements of the CH/CD bond out of the CCO plane were found to be 735/675 cm−1 and ±34°/±32° for MPA-h1 and MPA-d1, respectively. Original Russian Text ? I.A. Godunov, S.L. Lur’e, N.N. Yakovlev, V.A. Bataev, 2007, published in Zhurnal Fizicheskoi Khimii, 2007, Vol. 81, No. 1, pp. 52–62.  相似文献   

10.
The infrared (3200 to 400 cm–1) spectra of gaseous and solid and Raman (3200 to 20 cm–1) spectra of liquid and solid ethyl chlorosilane-Si-d2, CH3CH2SiD2Cl, have been recorded. Both the gauche and trans conformers have been identified in the fluid phases, but only the gauche conformer remains in the solid phase. Variable temperature (–105 to –150°C) studies of the infrared spectra of CH3CH2SiH2Cl dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 78±11 cm–1 (0.93±0.13 kJ/mol), with the gauche conformer the more stable form. Utilizing the frequencies of the silicon-hydrogen stretches, from the chlorosilane-Si-d isotopomer, Si—H bond distances of 1.481 and 1.480 Å have been obtained for the gauche conformer and 1.481 Å for the trans conformer. Complete vibrational assignments are proposed for both isotopomers which are consistent with the predicted frequencies utilizing the force constants from ab initio MP2/6-31G(d) calculations. Both the infrared intensities and the Raman activities and depolarization values have been obtained from the ab initio calculations. Complete equilibrium geometries have been determined by ab initio calculations employing the 6-31(d), 6-311++G(d,p), and 6-311+G(2d,2p) basis sets with full electron correlation by the Moller–Plesset (MP) perturbation method to second order. Continuing the previously reported rotational constants from five different isotopomers and the ab initio predicted structural parameters, adjusted r 0 parameters have been calculated, which are compared to the corresponding r s parameters. The results are discussed and the theoretical values are compared to the experimental values when appropriate.Taken in part from the dissertation of Y. E. Nashed, which will be submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree  相似文献   

11.
The conformational composition of gaseous MTMNB and the molecular structures of the rotational forms have been studied by electron diffraction at 130C aided by results from ab initio and density functional theory calculations. The conformational potential energy surface has been investigated by using the B3LYP/6-31G(d,p) method. As a result, six minimum-energy conformers have been identified. Geometries of all conformers were optimized using MP2/6-31G(d,p), B3LYP/6-31G(d,p), and B3LYP/cc-pVTZ methods. These calculations resulted in accurate geometries, relative energies, and harmonic vibrational frequencies for all conformers. The B3LYP/cc-pVTZ energies were then used to calculate the Boltzmann distribution of conformers. The best fit of the electron diffraction data to calculated values was obtained for the six conformer model, in agreement with the theoretical predictions. Average parameter values (ra in angstroms, angle α in degrees, and estimated total errors given in parentheses) weighted for the mixture of six conformers are r(C–C) = 1.507(5), r(C–C)ring, av = 1.397(3), r(C–S)av = 1.814(4), r(C–N) = 1.495(4), r(N–O)av = 1.223(3), ∠(C–C–C)ring = 116.0–122.5, ∠ C6–C4–C7 = 118.2(4), ∠ C–C–S = 113.6(6), ∠ C–S–C = 98.5(12), ∠ N–C–C4 = 121.9(3), ∠(O–N–C)av = 116.8(3), ∠ O–N–O = 127.0(4). Torsional angles could not be refined. Theoretical B3LYP/cc-pVTZ torsional angles for the rotation about C–N bond, φCN, were found to be 30.5–36.5 for different conformers. As to internal rotation about C–C and C–S bonds, values of φCC = 68–118 and φCS = 66–71 were obtained for the three most stable conformers with gauche orientation with respect to these bonds. Some conclusions of this work were presented in a short communication in Russ. J. Phys. Chem. 2005, 79, 1701.  相似文献   

12.
Starting from chlorocarbonyl isocyanate and BBr3, the compound bromocarbonyl isocyanate, BrC(O)NCO, has been prepared. The IR, Raman, mass and 13C NMR spectra have been obtained and interpreted. The vibrational data point to the existence of planar trans and cis conformers (with respect to the double bonds), the trans conformer being by far the more abundant at room temperature.  相似文献   

13.
Matrix-isolated IR spectra of 1,2-ethanedithiol, (methylthio)methanethiol, and dimethyldisulfide were recorded from 400 to 4000 cm−1 in argon and nitrogen matrices at 12 K. The appearances of new bands around the vibrations of the monomers provide evidence for the presence of dimer and multimers of 1,2-ethanedithiol and (methythio)methanethiol in argon and nitrogen matrices. The co-existence of two different dimers of (methylthio)methanethiol in nitrogen matrices is considered on the basis of the experimental data. The spectroscopic data confirm the presence of one gauche and one trans conformer for 1,2-ethanedithiol and at least three conformers for (methylthio)methanethiol, but only one gauche form for dimethyl disulfide in the matrices.  相似文献   

14.
The far-infrared spectra of gaseous and solid ethyl nitrate, CH3CH2ONO2, have been recorded from 500 to 50 cm−1. The fundamental asymmetric torsion of the trans conformer which has a heavy atom plane has been observed at 112.50 cm−1 with two excited states failing to lower frequencies, and the corresponding fundamental torsion of the gauche conformer was observed at 109.62 cm−1 with two excited states also falling to lower frequencies. The results of a variable temperature Raman study indicate that the trans conformer is more stable than the gauche conformer by 328 ± 96 cm−1 (938 ± 275 cal mol−1). An asymmetric potential function governing the internal rotation about the CH2O bond is reported which gives a trans to gauche barrier of 894 ± 15 cm−1 (2.56 ± 0.04 kcal mol−1) and a gauche to gauche barrier of 3063 ± 68 cm−1 (8.76 ± 0.20 kcal mol−1) with the trans conformer more stable by 220 ± 148 cm−1 (0.63 ± 0.42 kcal mol−1). Transitions arising from the symmetric CH3 and NO2 torsions are observed for both conformers, from which the threefold and twofold periodic barriers to internal rotation have been calculated. For the trans conformer the values are 1002 cm−1 (2.87 kcal mol−1) and 2355 ± 145 cm−1 (6.73 ± 0.42 kcal mol−1) and for the gauche conformer they are 981 cm−1 (2.81 kcal mol−1) and 2736 ± 632 cm−1 (7.82 ± 1.81 kcal mol−1) for the CH3 and NO2 rotors, respectively. These results are compared to the corresponding quantities for some similar molecules.  相似文献   

15.
IR and Raman spectra of Cl2SiR2 (R=Hexn (1), Bun (2)) in liquid, glassy, and polycrystalline states were investigated. In the liquid and glassy states, rotational isomerism about the Si−C and C−C bonds takes place, the compounds being mixtures of conformers. In the crystalline state, only one, the most stable conformer (all-trans in relation to the C−C bonds), persists. Compound2, in contrast to1, was found to crystallize on cooling with great difficulty. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 315–319, February, 1997.  相似文献   

16.
The interactions of the sulfonium ions (CH3)3S+, (CH3)2S+CH2CO2 , and (CH3)2S+-CH2CH2CO2 with up to four water molecules have been studied by ab initio molecular orbital methods. Complexes of (CH3)3S+ with one to three water molecules involve strong electrostatic sulfur-oxygen interactions; in contrast, the sulfide (CH3)2S interacts with water molecules via weak S-H hydrogen bonds, suggesting that methyl-group transfer from (CH3)3S+ in aqueous solution involves a significant alteration of the hydration pattern around the sulfur atom. Two conformers of (CH3)2S+CH2CO2 were found that display sulfur-oxygen distances which are approximately 0.3 å less than the sum of the sulfur and oxygen van der Waals radii, indicating a strong intramolecular electrostatic interaction. For the complexes (CH3)2S+CH2CO2 ·nH2O(n =1–4), water interacts primarily with the carboxylate group via hydrogen bonds, rather than electrostatically with the sulfur atom, although in complexes with the three- and four-water complexes, the proximity of the positively charged sulfur atom to the carboxylate group significantly alters the hydration pattern compared to that in the corresponding of complexes CH3SCH2CO2 · Thus, methyl transfer from (CH3)2S+CH2CO2 to an acceptor in aqueous solution also involves substantial changes in the hydration pattern around the carboxylate group.  相似文献   

17.
The infrared (3500 to 40 cm−1) and Raman (3500 to 10 cm−1) spectra have been recorded for the gaseous and solid phases of ethyldichlorophosphine, CH3CH2PCl2, and CD3CD2PCl2. Additionally, the Raman spectra of the liquids were recorded and qualitative depolarization values were obtained. In the spectrum of the gas the gauche conformer is predominant with about 65% abundance whereas in the spectrum of the liquid at ambient temperature the amount of gauche conformer is reduced compared to the gas phase and at −100°C the trans conformer predominates. The trans conformer is the more stable species in the solid. A variable temperature study was carried out on the Raman spectrum of the liquid and ΔH and ΔS values of 190 ± 30 cm−1 (543 ± 87 cal/mol) and 2.86 ± 0.3 eu were determined, respectively, with the trans conformer being more stable. Similar variable temperature studies have been carried out on a number of conformer peaks in the infrared spectrum of the gas and a ΔH value of 53 ± 38 cm−1 (152 ± 110 cal/mol) was obtained, again with the trans conformer being more stable. All the fundamental modes of both conformers have been assigned utilizing band contours, depolarization values, isotopic shift factors and group frequencies. A normal coordinate calculation has been carried out utilizing a modified valence force field to calculate the frequencies and potential energy distribution for both conformers. The barriers to methyl rotation of the trans and gauche conformers are 2.2 ± 0.1 and 2.3 ± 0.1 kcal/mol, respectively. These results are compared to similar quantities for some corresponding molecules.  相似文献   

18.
The vibrational spectra of CF3CH2CH2Cl in different states of aggregation is investigated and the normal coordinate analysis of trans- and gauche-conformers is carried out. The assignments in vibrational spectra for both the conformers of CF3CH2CH2Cl are given. It is shown that the stable crystalline modification, crystal II, is formed by the trans-conformer of the molecule.  相似文献   

19.
The Raman (3500-10 cm−1) and infrared (3500-50 cm−1) spectra of solid ethyldichlorophosphine-borane, CH3CH2P(BH3)Cl2 and its deuterated analog, CH3CH2P(BD3)Cl2 have been recorded. Additionally, the infrared spectra of the gases and the Raman spectra of the liquids have been recorded and qualitative depolarization ratios have been obtained. Based on the fact that several distinct Raman lines disappear on going from the liquid to the solid state, it is concluded that the molecule exists as a mixture of the gauche and trans conformers, with the trans conformer being more stable in the liquid phase, and the only one present in the solid phase. From a temperature study of the Raman spectrum of the liquid, the enthalpy difference between the gauche and trans conformers was determined to be nearly zero. Based on Raman depolarization data, group frequencies, isotopic shift factors and infrared band contours, a complete vibrational assignment has been proposed for the trans conformer. The assignment is supported by a normal coordinate calculation which was carried out utilizing a modified valence force field to obtain the frequencies of the normal modes and the potential energy distribution. The BH3 torsion has been observed at 188 cm−1, while the BD3 torsion was not observed. The methyl torsions in the spectra of the solids have been observed at 209 and 202 cm−1 for the “light” and deuterated species, respectively. From the torsional data, barriers to internal rotation have been calculated. The asymmetric torsional mode has been observed for the trans conformer in the infrared spectra of the gas phase at 108 and 104 cm−1 for the BH3 and BD3 species, respectively. These results are compared with similar quantities for some corresponding organophosphine—borane compounds.  相似文献   

20.
Methylfluorocarbonyl disulphide, FC(O)SSCH3, was prepared for the first time by reaction of FC(O)SCl with CH3SH at room temperature. Infrared data for the vapour and matrices (Ar, Ne and N2) as well as Raman, UV, mass and 19F, 13C and 1H NMR spectra have been obtained and interpreted.From these data, the most stable conformer was deduced to have the gauche conformation with respect to the FC(O) and CH3 groups with the syn conformation between the CO and SS bonds having C1 molecular symmetry. This conformer is in equilibrium with another, possibly the corresponding anti, referring to the CO and SS bonds.The main structure found for FC(O)S-containing compounds seems to be the syn conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号