首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
It is widely held that the spatial resolution achievable by NMR microscopic imaging is limited in biological systems by diffusion to approximately 1-5 microns. However, these estimates were developed for specific imaging techniques and represent practical rather than fundamental limits. NMR imaging is limited by the signal-to-noise ratio (SNR). Diffusion effects on spatial resolution can be made arbitrarily small in principle by increasing the gradient strength. The exponential signal attenuation from random spin motion in a gradient, however, will reduce the signal far below the noise level when the voxel size is reduced much below 5 microns. Two factors can be optimized to improve the SNR: (1) the inductive linkage between microscopic samples and the detection apparatus and (2) the temperature of the rf probe. In this work, the filling factor was optimized using inductors with diameters less than 1 mm. It is furthermore shown that probe circuit cooling results in significant improvements in SNR, whereas cooling of the preamplifier is of little value when proper noise matching between the resonant circuit and preamplifier is accomplished. Using three-dimensional Fourier imaging techniques, we have obtained images of single-cell organisms with spatial resolution of approximately 6 microns. Practical limitations include mechanical stability of the apparatus, thermal shielding between the sample and probe, and the magnetic susceptibility of the sample.  相似文献   

2.
A fast method for quantitative imaging of T2 and displacement (flow and diffusion) is presented. The pulse sequence combines multi-PGSE NMR with multi-echo acquisition and compensates for flow effects in the read gradient and diffusion during multi-echo trains. The impact of the gradient pulses in a multi-echo train on the signal phase and amplitude is discussed. It is shown that separate T2 and displacement images with microscopic resolution can be obtained within minutes. The capability for 3D flow imaging is demonstrated. The sequence is then used to investigate forced detachment of a biofilm in a tube.  相似文献   

3.
光学遥感系统采用线阵CCD推扫成像方法获取地面景物的高分辨图像信息,调制传递函数(MTF)是评价系统成像质量的重要参数。使用矩形波板作为目标在Nyquist频率处测试光电成像系统的静态调制传递函数可以定量评价系统的成像质量。由于采用线阵CCD推扫成像的光电系统还需要测试其在像移补偿、偏流角控制状态下的动态调制传递函数(Dynamic MTF),才可以定量评价系统在工作状态下的动态成像性能。为此,论文基于光电成像系统动静态调制传递函数的测试原理,研究了测试系统的组成与工作方法,对其中的平行光管组件与动静态目标发生装置进行了仿真设计。其中平行光管的波像差优于25 nm(RMS),静态目标发生装置的调焦精度优于3 m,动态目标发生装置的输出像移补偿偏差小于5/1 000,照明均匀性优于95%,可以理论上实现非相干照明。上述仿真设计结果可以满足新型光学遥感成像系统实验室内动静态调制传递函数的测试需求。  相似文献   

4.
X光针孔成像是惯性约束聚变(ICF)研究中重要的诊断方法,对其点扩散函数的计算可用于图像重建和系统空间分辨的判断。对菲涅耳衍射公式进行了化简,分析了X光能点、针孔尺寸及放大倍率对针孔点扩散函数的影响。实验在保证成像能获得足够高信噪比的条件下,通过模拟获得在最佳空间分辨时所要的针孔大小、放大倍率和X光能点等参数。在流体力学不稳定性的静态样品定标实验中,通过模拟获得了针孔的调制传递函数(MTF),结合实验测量的结果反推获得分幅相机本身的MTF值。同时采用测刀边函数的方法获得了分幅相机本身的刀边函数,进而得到相机在各空间频率下的MTF值。两种方法得到的分幅相机MTF值一致,验证了通过菲涅耳衍射模拟X光针孔成像的可行性。  相似文献   

5.
大视角、高分辨率、低畸变光学成像系统是全视角高精度三维测量仪中最为关键的核心器件。现有三维测量仪实际使用过程中不可避免会产生各种误差,因此科学合理地评估和降低全视角高精度三维测量仪的测量误差具有十分重要的科学及工程应用意义。通过多角度、全方面分析定量研究了相机内方位元素标定误差对几何定位误差的影响,以及相机光学系统MTF分析、点扩散函数分析、波像差分析和公差分析对匹配误差产生的影响。研究结果表明,在各种影响三维测量仪光学成像系统测量误差的因素当中,相机的传递函数是影响系统三维定位误差最主要的因素,当系统MTFN值大于0.4 lp/mm、系统几何畸变小于1个像素,PSF能量集中在以3 μm为半径的圆环内(小于1个像素),且PSF峰值达到了0.9时,三维测量仪的定位误差可达到秒级精度。  相似文献   

6.
Incoherent spin motion, such as diffusion, can lead to significant signal loss in multiple spin echoes (MSE) experiments, sometimes to its complete extinction. Coherent spin motion, such as laminar flow, can also modify the magnetization in MSE imaging and yield additional contrast. Our experimental results indicate that MSE is flow-sensitive. Our theoretical analysis and experimental results show how the effect of the distant dipolar field can be annihilated by flow. This effect can be quantified by directly solving the nonlinear Bloch equation, taking into account the deformation of the dipolar field by motion. Unexpected results have been observed, such as a recovery of the dipolar interaction due to flow in the "magic angle" condition.  相似文献   

7.
Half-Fourier imaging is useful for reducing imaging time by requiring less than the usual number of phase-encoding steps. This increase in speed can be traded off for longer repeat times, TR, for improved contrast-to-noise in the same imaging time or to collect short asymmetric echoes. Consequently, it is shown to be especially useful for long TR spin-echo imaging where at 1.5 T a repeat time of 4 sec is recommended for a double-echo TE = 30/90 sequence or 3 sec for a double-echo TE = 15/90 sequence. Short TR FLASH imaging also benefits from a longer TR since there is more time to spoil the signal. In both cases, there is the advantage when a multislice acquisition mode is used that more slices (and hence, a larger volume) can be taken. Another application is to apply half-Fourier imaging in the read direction to avoid spin dephasing and motion artifacts. This is particularly useful in angiographic imaging where smaller pixel sizes and shorter echo times both reduce pixel dephasing. Again, even though taking less than the usual number of data points leads to a reduction in S/N, the improved signal and resolution for blood vessels can more than compensate this loss.  相似文献   

8.
The application of echo planar imaging to NMR microscopy offers a temporal resolution unparalleled by other techniques. However, a major difficulty in imaging at the high field strengths used for microscopy is the effect of local field inhomogeneities caused by magnetic susceptibility effects. This can give rise to both image distortion and signal loss. In addition, the effect of diffusion in the presence of the large imaging gradients gives rise to a broadening of the point spread function and hence loss of true resolution. We compare the sensitivity of two techniques, MBEST and PEPI, to both of these effects. Analytic expressions for the signal in each echo of the two sequences are developed, and the point spread functions for the two techniques are calculated. Using PEPI, we have been able to produce images with an in-plane resolution of 50 micrometer from a single free induction decay. This technique has been extended to three dimensions allowing the generation of 64(3) images with an isotropic resolution of 80 micrometer.  相似文献   

9.
利用维纳滤波改善声透镜光声成像系统的分辨率   总被引:1,自引:1,他引:0  
为了克服衍射效应对光声成像系统分辨率的限制,需要采用逆卷积方法进行图像反演.从理论上分析了声透镜成像原理,模拟仿真了声透镜的点扩展函数对声透镜成像系统分辨率的影响和维纳滤波解卷积方法复原光声成像的过程,并利用自搭建的声透镜光声成像系统进行了深入的实验研究,得到了物平面上相距4 mm和3 mm的两个黑胶带点的直接成像光声...  相似文献   

10.
We describe an experimental approach that combines multidimensional NMR experiments with a steadily renewed source of laser-polarized 129Xe. Using a continuous flow system to circulate the gas mixture, gas phase NMR signals of laser-polarized 129Xe can be observed with an enhancement of three to four orders of magnitude compared to the equilibrium 129Xe NMR signal. Due to the fact that the gas flow recovers the nonequilibrium 129Xe nuclear spin polarization in 0.2 to 4 s, signal accumulation on the time scale of seconds is feasible, allowing previously inaccessible phase cycling and signal manipulation. Several possible applications of MRI of laser-polarized 129Xe under continuous flow conditions are presented here. The spin density images of capillary tubes demonstrate the feasibility of imaging under continuous flow. Dynamic displacement profiles, measured by a pulsed gradient spin echo experiment, show entry flow properties of the gas passing through a constriction under laminar flow conditions. Further, dynamic displacement profiles of 129Xe, flowing through polyurethane foams with different densities and pore sizes, are presented.  相似文献   

11.
High Resolution Diffusion-ordered Spectroscopy (HR-DOSY) is a valuable tool for mixture analysis by NMR. It separates the signals from different components according to their diffusion behavior, and can provide exquisite diffusion resolution when there is no signal overlap. In HR-DOSY experiments on (1)H (by far the most common nucleus used for DOSY) there is frequent signal overlap that confuses interpretation. In contrast, a (13)C spectrum usually has little overlap, and is in this respect a much better option for a DOSY experiment. The low signal-to-noise ratio is a critical limiting factor, but with recent technical advances such as cryogenic probes this problem is now less acute. The most widely-used pulse sequences for (13)C DOSY perform diffusion encoding with (1)H, using a stimulated echo in which half of the signal is lost. This signal loss can be avoided by encoding diffusion with (13)C in a spin echo experiment such as the DEPTSE pulse sequence described here.  相似文献   

12.
We present a pulse sequence that enables the accurate and spatially resolved measurements of the displacements of spins in a variety of (biological) systems. The pulse sequence combines pulsed field gradient (PFG) NMR with turbo spin-echo (TSE) imaging. It is shown here that by ensuring that the phase of the echoes within a normal spin-echo train is constant, displacement propagators can be generated on a pixel-by-pixel basis. These propagators accurately describe the distribution of displacements, while imaging time is decreased by using separate phase encoding for every echo in a TSE train. Measurements at 0.47 T on two phantoms and the stem of an intact tomato plant demonstrate the capability of the sequence to measure complete and accurate propagators, encoded with 16 PFG steps, for each pixel in a 128 x 128 image (resolution 117 x 117 x 3,000 microm) within 17 min. Dynamic displacement studies on a physiologically relevant time resolution for plants are now within reach.  相似文献   

13.
周亮  刘朝晖  折文集 《物理学报》2015,64(22):224207-224207
波前编码系统采用在传统光学系统中加入相位板来扩大光学系统的景深而避免传统景深延拓技术的不利影响. 由于相位板的参数不可调, 整个系统的景深延拓扩展率也不能动态可调. 采用两相位板组合的方法可以有效克服这一点. 本文首先从光线差的角度提出了两三次相位板组合下的光线像差分布以及点扩散函数尺寸的具体关系表达式, 直观体现了系统的光线结构, 指出了光线结构和点扩散函数尺寸受两三次相位板的面型和相对位移量的影响. 其次采用稳相法从空间域给出了系统点扩散函数表达式, 依据点扩散函数的振荡性质给出了有效带宽表达式, 提出了点扩散函数在像面的位置会随两相位板面型参数以及相对于光瞳中心的位移量而发生平移. 最后利用菲涅耳积分给出两三次相位板任意面型参数和相对位移组合下的准确光学传递函数. 在得到的调制传递函数中直观体现出了面型参数和相对位移量对调制传递函数和相位传递函数以及有效带宽的影响, 并说明了此系统相位传递函数的非线性性质. 通过空间域与频率域相结合的方法分析验证了传统的两三次相位板组合具有景深可调和带宽可调的性质, 为设计可调谐波前编码系统提供了理论依据.  相似文献   

14.
编码孔径成像系统中的点扩散函数   总被引:3,自引:2,他引:1       下载免费PDF全文
程丽红  田晓东  谢存 《应用光学》2005,26(5):13-016
在X光编码孔径成像系统中,系统的点扩散函数决定成像系统的成像质量。由于系统的点扩散函数可用来求解系统的传递函数,并可由此制作实现图像重构的滤波器,因此点扩散函数的精确程度直接影响重构过程中图像的质量。本文以标量衍射理论为基础,从理论上推导出了衍射效应条件下编码孔径中圆环的点扩散函数,并将它用于制作光学系统的滤波器。最后利用Wiener滤波函数对编码重叠像的频谱分布进行滤波处理,再经过逆傅里叶变换得到了重构图像。  相似文献   

15.
时间分辨投影成像术的成像分辨率的理论研究   总被引:2,自引:0,他引:2  
陈敏  陈建文 《光学学报》1998,18(10):390-1394
从漫射近似理论出发,详细讨论了漫射投影系统的透射光斑的点扩散函数与时间门的时间分辨率,探测器的有限大小,生物组织的厚度以及积分时间的关系。  相似文献   

16.
NMR microscopy is routinely employed in fields of science such as biology, botany, and materials science to observe magnetic parameters and transport phenomena in small scale structures. Despite extensive efforts, the resolution of this method is limited (>10 microm for short acquisition times), and thus cannot answer many key questions in these fields. We show, through theoretical prediction and initial experiments, that ESR microscopy, although much less developed, can improve upon the resolution limits of NMR, and successfully undertake the 1 mum resolution challenge. Our theoretical predictions demonstrate that existing ESR technology, along with advanced imaging probe design (resonator and gradient coils), using solutions of narrow linewidth radicals (the trityl family), should yield 64 x 64 pixels 2D images (with z slice selection) with a resolution of 1 x 1 x 10 microm at approximately 60 GHz in less than 1h of acquisition. Our initial imaging results, conducted by CW ESR at X-band, support these theoretical predictions and already improve upon the previously reported state-of-the-art for 2D ESR image resolution achieving approximately 10 x 10 mum, in just several minutes of acquisition time. We analyze how future progress, which includes improved resonators, increased frequency of measurement, and advanced pulsed techniques, should achieve the goal of micron resolution.  相似文献   

17.
The solution of the Mathisson-Papapetrou equations generalized to the case of the Einstein-Cartan theory, when they describe the motion of a test particle in an external torsion field, is considered. It is shown that a particle of nonzero rest mass moves inertially in a constant polarized torsion field, but its spin precesses around the direction of polarization of the spin of the torsion source. It is also found that the motion of a massless particle in a variable torsion field leads to a torsion frequency displacement effect of a photon under the assumption that the photon spin interacts with the torsion.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 84–87, August, 1980.  相似文献   

18.
Localized phosphorus-31 NMR spectra of human calf muscle in vivo were obtained by means of echo-planar spectroscopic imaging (EPSI) with a 1.5-T whole-body scanner. The technique permits the measurement of two-dimensional 31P SI data at a minimum acquisition time of 2.4 s (8x8 voxels, TR=300 ms). With 9.4 min measurement time (TR=1100 ms, 64 averages) and 25x25x40 mm spatial resolution in vivo the 31P NMR signal-to-noise ratio (S/N) of the phosphocreatine (PCr) resonance was about 45; the multiplets of nucleoside 5'-triphosphates were resolved. Spectral quality permits quantitative assessment of the PCr signal in a measurement time that is shorter by a factor of 2 or more than the minimum measurement time feasible with chemical-shift imaging. In a functional EPSI study with a time resolution of 20.5 s on the calf muscle of volunteers, spectra showed a 40% decrease of the PCr signal intensity (at rest: S/N congruent with12) upon exertion of the muscle.  相似文献   

19.
A stochastic computer simulation is used to investigate the effects of restricted diffusion in NMR microscopy. It is shown that diffusion contributes to a loss of interfacial resolution through two main mechanisms. The first applies to spatial regions bound by impermeable interfaces and involves diffusive averaging of the frequency differences set up by the applied field gradients. This effect can be made arbitrarily small by increasing the magnitude of the field gradient. The second mechanism involves diffusion through permeable membranes or interfaces defining the sample morphology. This effect can, in principle, be reduced by multiple echo imaging with short pulse spacings. The possibility of imaging diffusive flow through a permeable interface is discussed.  相似文献   

20.
为了降低飞行器倾斜成像工作过程中视轴角误差对TDICCD空间相机成像质量的影响,提出满足相机成像质量的视轴角范围及控制误差的要求。根据空间相机成像机理,给出了焦面像移速度以及由视轴角误差引起的像移速度匹配误差计算公式,分析了视轴角对地面像元分辨力的影响。并以调制传递函数(MTF)为约束条件给出了不同积分级数下视轴角的范围。通过实际工程参数计算得出,当视轴角控制误差为0.8时,满足96级TDICCD成像质量要求的视轴角应不大于12.75;若要满足96级TDICCD倾斜成像时视轴角达到25,则视轴角控制误差应优于0.4。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号