首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The [Pd(dpa)(tsser)] complex (1) is prepared from the reaction of PdCl2 and 2,2′-dipyridylamine (dpa) with 4-toluenesulfonyl-L-serine (tsserH2). This complex is characterized by spectral methods (IR, UV-Vis, 1H NMR, and luminescence), elemental analysis, thermal analysis (TG, DTA), and single crystal X-ray diffraction. X-ray structure determinations show that in this complex, PdII atoms are four-coordinated in a distorted square-planar configuration by two N atoms from a bidentate 2,2′-dipyridylamine ligand and one N atom and one O atom from a bidentate tsser2– ligand.  相似文献   

2.
Two proton-conductive Cu(I) complexes based on Keggin-type clusters, [Cu(debqdc)2]2[HPW12O40]·4H2O (1), and [Cu(debqdc)2]2[HPW12O40]·debqdc·4H2O (2), where debqdc is diethyl 4,4′-dicarboxy-2,2′-biquinoline, were simply synthesized at room temperature. The products were structurally characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray diffraction analyses. Single-crystal X-ray diffraction analyses revealed that both complexes crystallized in the triclinic space group P?1 and presented two three-dimensional supramolecular networks with one-dimensional hydrophilic channels via hydrogen-bonding interactions and π–π stacking interactions between the aromatic rings. In the [Cu(debqdc)2]+ ion, debqdc acts as a bidentate nitrogen donor ligand in the chelating fashion. The bulky debqdc ligand constrains the Cu(I) metal center within such a rigid environment in a tetrahedral geometry. The two complexes exhibit good proton conductivities (10?5 ~ 10?4 S cm?1) at 100 °C in the relative humidity range 35 ~ 98%. The luminescence behaviors of these complexes in the solid state at room temperature have also been investigated. Upon excitation at 285 nm, both 1 and 2 display three main emission peaks centered at 470, 520, and 568 nm, respectively.  相似文献   

3.
Comparative study of cyclopalladated ethylenediamine complexes of 2,3-diphenylquinoxaline (Hdphqx) [Pd(dphqx)En]ClO4 and 2,2′,3,3′-tetraphenylbiquinoline (H2tphbq) [(PdEn)2(μ-tphbq)](ClO4)2, and the free heterocyclic ligands was performed by means of 1H NMR spectroscopy, electronic absorption and emission spectroscopy, and cyclic voltammetry. It was shown that cyclopalladation gives rise to a long-wave absorption band in the visible spectrum, a batochromic shift of the vibrationally structured phosphorescence band, and an anodic shift of the ligand-centered reduction potential of the complexes com-pared to free ligands.  相似文献   

4.
Treatment of [MI2(CO)3(NCMe)2] with two equivalents of 4,4-bipyridine (4,4-bipy) in CH2Cl2 at room temperature gave the MeCN displaced products, [MI2(CO)3(4,4-bipy-N)2] (1) and (2). Equimolar amounts of [MI2(CO)3(NCMe)2] and L (L = PPh3, AsPh3 or SbPh3) react to give [MI2(CO)3(NCMe)L], which when reacted in situ with 4,4-bipy yield the new complexes, [MI2(CO)3(4,4-bipy-N)L] (3)(8). Reaction of equimolar quantities of [WI2(CO)(NCMe)( 2-RC2R)2] (R = Me or Ph) and 4,4-bipy gave the new bis(alkyne) complexes, [WI2(CO)(4,4-bipy-N)( 2-RC2R)2] (9) and (10). Treatment of [MI2(CO)3(NCMe)2] with two equivalents of (9) or (10) in CH2Cl2 at room temperature affords the bimetallic complexes, [MI2(CO)3{WI2(CO)(4,4-bipy-N,N)( 2-RC2R)2}2] (11)(14). Equimolar quantities of [MI2(CO)3(NCMe)(PPh3)] (prepared in situ) and (9) or (10), react to give the 4,4-bipy-bridged complexes, [MI2(CO)3{WI2(CO)(4,4-bipy-N,N)( 2-RC2R)2}(PPh3)] (15)(18). All the new complexes, (1)(18) were characterised by elemental analysis (C, H and N), i.r. and 1H-n.m.r. spectroscopy.  相似文献   

5.
The reactivity of oxorhenium(V) precursors with the potentially N,N-donor ligand 2,2′-dipyridylamine (dpa) has been investigated. Reaction of a two-fold molar excess of dpa with trans-[ReO(OEt)Cl2(PPh3)2] in ethanol led to the isolation of [ReOCl2(OEt)(dpa)] (1). Spectroscopic measurements indicate that dpa is coordinated as a bidentate in the equatorial plane cis to the oxo group, with the ethoxide in the trans position. Treatment of trans-[ReOCl3(PPh3)2] with a tenfold molar excess of dpa in ethanol at reflux yielded the trans-dioxo complex [ReO2(dpa)2]Cl (2), but with a twofold molar excess (μ-O)[{ReOCl2(dpa)}2] (3a) was isolated. The latter reaction with (n-Bu4N)[ReOCl4] as starting material in ethanol at room temperature led to a dark green product, also with the formulation (μ-O)[{ReOCl2(dpa)}2] (3b). These compounds were characterised by common spectroscopic techniques, and the crystal structures of 2·3H2O, 3a and 3b·2DMSO were determined. The structure of 3b presents a nearly linear O=Re–O–Re=O group, with the two [ReOCl2(dpa)] halves of the dimer rotated by 180.0° about the Re–O–Re fragment away from an eclipsed conformation. In 3a, the two halves are only rotated by 61.4°.  相似文献   

6.
The molecular and crystal structures of N≡C-C6H4-C6H4-O-(CH2)8-O-CO-CH=CH2 (4(3-acryloyloxy)octyloxy-4′-cyanobiphenyl) (I) and N≡C-C6H4-C6H4-O-(CH2)6-O-CO-CH=CH2 (4(3-acryloyloxy)hexyloxy-4′-cyanobiphenyl) (II) were determined by X-ray diffraction. The structures of I and II are stereotype. The space group of I and II is C2/c, Z = 8; lattice parameters I: a = 34.677(7)?, b = 9.452(2)?, c = 13.004(3) ?, β = 99.30(3)°; II: a = 30.858(6) ?, b = 9.504(2) ?, c = 13.082(2) ?, β = 92.78(3)°. The planar extended molecules I and II are packed in the unit cell to give clearly differentiated aliphatic and aromatic regions throughout the whole crystal. All intermolecular contacts are concentrated in the aromatic region. The molecular packing is very loose but the aromatic areas of I and II fully coincide. The only free parameter of the structure is the length of the aliphatic chain (CH2)n (n = 8 and 6). According to DSC data, compound I possesses enantiotropic mesomorphism and II possesses monotropic mesomorphism.  相似文献   

7.
Summary The reactions of 2,2-biquinoline(biq) with M(PhCN)2X2 (M=Pd; X=Cl or Br; M=Pt, X=Cl, Br or I), K2PtCl4 and RhCl3·3H2O and of 2-(2-pyridyl)quinoline (pq) with K2PtCl4 and RhCl3·3H2O have been investigated. The isolated complexescis-[Pd(biq)X2] (X=Cl or Br),cis-[Pt(biq)Cl2],cis-[Pt(biq)Cl2]·H2O,trans-[Pt(biq)2Br2]·5H2O, [Pt3(biq)2I6],mer-[Rh(biq)Cl3-(H2O)] andmer-[Rh(pq)Cl3(H2O)] have been characterized by elemental analyses, conductivity measurements, i.r., electronic, and1H n.m.r. spectra. The reaction of pq with K2PtCl4 in 1M H2SO4 gave the salt 2-(2-pyridyl) quinolinium tetrachloroplatinate(II) pentahydrate, (pqH)2[PtCl4]·5H2O; when the reaction was carried out in aqueous acetone,cis-[Pt(pq)Cl2] was obtained. A new method for the synthesis ofcis-[Rh(biq)2X2]X (X=Cl or Br) is described; both compounds have been further characterized by1H n.m.r.  相似文献   

8.
[Ni(5,5′-dmbipy)2Cl2]·3H2O (1) complex was obtained from the reaction of NiCl2·6H2O with 5,5′-dimethyl-2,2′-bipyridine (5,5′-dmbipy) in a mixture of CH3OH/CH3CN. This complex was characterized by elemental analysis, IR, UV-Vis and luminescence spectroscopy, and its structure was determined by the single-crystal diffraction method. The Ni atom has a distorted octahedral coordination by four N atoms from two 5,5′-dmbipy ligands and two Cl anions.  相似文献   

9.
 A crystal structure determination of 2,2′-bipyrroyl (1; 2,2′-dipyrryl-diketone, bis (2-pyrrolyl)ethanedione) and its spectroscopic properties in solution are reported. In the crystal, 1 self-assembles via hydrogen bonding into supramolecular ribbons that extend indefinitely through the crystal lattice. The observed molecular conformation is one where each pyrrole ring and adjacent carbonyl group are co-planar (torsion angle ∼ 0.9°), with the N-H pointing in the same direction as the C=O. The two carbonyls have a transoid but not co-planar geometry with a torsion angle of ∼128°. Adjacent molecules in the crystal are linked by pairs of intermolecular hydrogen bonds, pyrrole NH to carbonyl oxygen, to form a matrix of polymeric chains that lie like neatly stacked, parallel streams of ribbons. Molecular mechanics calculations on the monomer indicate an intra-molecularly hydrogen bonded planar conformation (sp, ap, sp) at the global energy minimum. In CHCl3, 1 is monomeric according to vapor pressure osmometry (MW obs=179±10 vsċMW calc=188). In THF, the measured molecular weight is 340±15, which corresponds best to one molecule of 1 solvated by two THF molecules (MW=322 for C10H8N2O4ċ2 C4H8O) rather than to a dimer.  相似文献   

10.
Bis-imines of 2,2′-diaminodiphenylditelluride and 2-tosylamino (9a) and 2-hydroxybenzaldehyde (9b) were prepared and studied by X-ray diffraction, heteronuclear (1H, 13C, 15N, and 125Te) magnetic resonance, and quantum chemical calculations (Pbe1pbe/DGDZVP). According to the X-ray diffraction data, compound 9b in the crystal phase has nonsymmetrical structure: one of the tellurium atoms forms hypervalent bonding with the adjacent oxygen atom, while the second one is not involved in such interaction. The NMR study showed the symmetric molecular structure of imines 9a,b in DMSO-d6 with the tellurium atoms interacting hypervalently with the C=N nitrogen atoms.  相似文献   

11.
Two new complexes {[Tb(2-IBA)3 · 2,2′-bipy]2 · C2H5OH} (1) and [Tb(2-ClBA)3 · 2,2′-bipy]2 (2) (2-IBA = 2-iodobenzoate; 2-ClBA = 2-chlorobenzoate; 2,2′-bipy = 2,2′-bipyridine) were prepared and their crystal structures determined by X-ray diffraction. Complex 1 is composed of two types of binuclear molecules, [Tb(2-IBA)3 · 2,2′-bipy]2 (a) and [Tb(2-IBA)3 · 2,2′-bipy]2 (b), and an uncoordinated ethanol molecule. In molecule (a), two Tb3+ ions are linked by four 2-IBA groups, all bidentate-bridging. In molecule (b), two Tb3+ ions are held together by four 2-IBA groups in two coordination modes, bidentate-bridging and chelating-bridging. In the two molecules, each Tb3+ ion is further bonded to one chelating 2-IBA group and one chelating 2,2′-bipy molecule, resulting in coordination numbers of eight for (a) and nine for (b). The structural characteristics of 2 are similar to that of molecule (b) in 1. The two complexes, 1 and 2, both emit strong green fluorescence under ultraviolet light with the 5D47F j (j = 6–3) emission of Tb3+ ion observed.  相似文献   

12.
Summary.  A crystal structure determination of 2,2′-bipyrroyl (1; 2,2′-dipyrryl-diketone, bis (2-pyrrolyl)ethanedione) and its spectroscopic properties in solution are reported. In the crystal, 1 self-assembles via hydrogen bonding into supramolecular ribbons that extend indefinitely through the crystal lattice. The observed molecular conformation is one where each pyrrole ring and adjacent carbonyl group are co-planar (torsion angle ∼ 0.9°), with the N-H pointing in the same direction as the C=O. The two carbonyls have a transoid but not co-planar geometry with a torsion angle of ∼128°. Adjacent molecules in the crystal are linked by pairs of intermolecular hydrogen bonds, pyrrole NH to carbonyl oxygen, to form a matrix of polymeric chains that lie like neatly stacked, parallel streams of ribbons. Molecular mechanics calculations on the monomer indicate an intra-molecularly hydrogen bonded planar conformation (sp, ap, sp) at the global energy minimum. In CHCl3, 1 is monomeric according to vapor pressure osmometry (MW obs=179±10 vsċMW calc=188). In THF, the measured molecular weight is 340±15, which corresponds best to one molecule of 1 solvated by two THF molecules (MW=322 for C10H8N2O4ċ2 C4H8O) rather than to a dimer. Received October 21, 1999. Accepted November 2, 1999  相似文献   

13.
The complexes [Cu(biq)2]Cl2 and [Cu(biq)2]BF4·biq (biq?=?2,2′-biquinoline) have been prepared and characterized. The interconversion to copper(I) complex [Cu(biq)2]BF4·biq, from [Cu(biq)2]Cl2 has been established. The new complexes have been characterized by elemental analysis, conductivity and magnetic measurements, IR, UV-vis and 1H- and 13C-NMR spectroscopy. The X-ray analysis of the complex [Cu(biq)2]BF4·biq supports the assumption of the interconversion of copper(II) to copper(I) in this case. The crystal structure shows that geometry around the metal is severely distorted from Td, and displays many supramolecular motifs incorporating both hydrophobic (aryl···aryl) and hydrophilic (C–H···F) intermolecular interactions. The microbiological activity of the complexes against bacteria and fungi was found to be high against Candida albicans, and slight to moderate against bacteria. The antimicrobial activity of [Cu(biq)2]BF4·biq was slightly better than that observed for [Cu(biq)2]Cl2 against both bacteria and fungi.  相似文献   

14.
Both bis- and tetrakis-substituted 2,2′-bipyridine complexes of lead(II), [Pb(bpy)2](PF6)2 and [Pb(bpy)4](PF6)2 · bpy, respectively, have been characterized by X-ray crystallography as hexafluorophosphate salts when three equivalents of bipyridine is combined with Pb(NO3)2 in aqueous solution prior to metathesis. The tetrakis-substituted product, [Pb(bpy)4](PF6)2 · bpy, shows an unusual combination of intramolecular and intermolecular π-stacking of two of the bipyridine ligands throughout the crystal. Incomplete metathesis also produces a catenated, mixed-anion complex, [Pb(bpy)2(µ-NO3)](PF6), where the nitrate bridges lead(II) metal centers to form a 1-D coordination polymer. If metathesis is carried out using perchlorate, a known [Pb(bpy)2](ClO4)2 analog is produced along with [bpyH](ClO4), which has not been previously characterized by X-ray crystallography.  相似文献   

15.
The crystal structures and thermal behaviour of bis(N-pyrrolidine-N′-(2-chloro-benzoyl)thioureato)zinc(II) (ZnL2) and its copper(II) analogue (CuL2) are reported. In both structures, the metal atoms are coordinated by two oxygen and two sulfur atoms to form neutral trans-square planar (Cu) and distorted tetrahedral (Zn) species. The thermal decomposition of the complexes was investigated by TG and DTA.  相似文献   

16.
17.
By the interaction between (Et4N)2[Mo2O2S8] and I2 in DMF with a subsequent addition of 2,2′-bipyridine or 1,10-phenanthroline, new binuclear complexes [Mo2O2S2I2(bipy)2] (1) and [Mo2O2S2I2(phen)2] (2) are obtained. The structure of [Mo2O2S2I2(bipy)2] is determined using single crystal X-ray diffraction. The compounds are characterized by elemental analysis and IR spectra. The [MoO(S2)2(bipy)] complex as a product of oxidative destruction of 1 is isolated and characterized.  相似文献   

18.
A new mixed-ligand complex, Cd(S2CN(C4H9)2 2)2(2,2′-Bipy), was synthesized. A polycrystal X-ray diffraction analysis was performed (DRON-3M and DRON-UM1 diffractometers, CuKα radiation, Ni filter) and the crystal structure was determined [Enraf-Nonius CAD-4 automatic diffractometer, MoKα radiation, 2440 nonzero independent reflections, 153 refined structural parameters, R is 0.11 for I>2σ(I)]. Crystal data for C28H44CdN4S4 : a = 28.716(4), b = 6.848(6), c = 17.188(2) Å, space group Pcca, V-3380.2(7) Å3, Z = 4, M = 679.42, dcaU.= 1.335 g/cm3. The structure consists of monomeric molecules in which the cadmium atom has a distorted octahedral environment. The polycrystal diffraction analysis revealed that the complex is isostructural with the defined complex Zn(S2CN(C4Hg)2)2(2,2′-Bipy). A crystal-chemical search on metal dialkyldithiocarbamates in the Cambridge Structural Database was accomplished and isostructural pairs of Zn and Cd metal complexes were found.  相似文献   

19.
20.
Complexes of 2,2-bipyridine-6,6-bis(carbothioamide), obtained with a variety of metal cations, were characterised by microanalyses, molar conductivities and by i.r. and n.m.r. (for diamagnetic compounds) spectra. The iron(II) complex was also characterised by Mössbauer spectroscopy. The spectral data indicate that, in all cases, the ligand coordinates to the metal through one pyridine nitrogen and one sulphur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号