共查询到20条相似文献,搜索用时 15 毫秒
1.
Mario A. Saucedo‐Espinosa Mallory M. Rauch Alexandra LaLonde Blanca H. Lapizco‐Encinas 《Electrophoresis》2016,37(4):635-644
The relative polarization behavior of micron and submicron polystyrene particles was investigated under direct current and very low frequency (<1 kHz) alternating current electric fields. Relative polarization of particles with respect to the suspending medium is expressed in terms of the Clausius–Mossotti factor, a parameter of crucial importance in dielectrophoretic‐based operations. Particle relative polarization was studied by employing insulator‐based dielectrophoretic (iDEP) devices. The effects of particle size, medium conductivity, and frequency (10–1000 Hz) of the applied electric potential on particle response were assessed through experiments and mathematical modeling with COMSOL Multiphysics®. Particles of different sizes (100–1000 nm diameters) were introduced into iDEP devices fabricated from polydimethylsiloxane (PDMS) and their dielectrophoretic responses under direct and alternating current electric fields were recorded and analyzed in the form of images and videos. The results illustrated that particle polarizability and dielectrophoretic response depend greatly on particle size and the frequency of the electric field. Small particles tend to exhibit positive DEP at higher frequencies (200–1000 Hz), while large particles exhibit negative DEP at lower frequencies (20–200 Hz). These differences in relative polarization can be used for the design of iDEP‐based separations and analysis of particle mixtures. 相似文献
2.
Nonlinear electrokinetics (EK), specifically electrophoresis of the second kind, dielectrophoresis (DEP) and electrorotation (EROT), have gained significant interest recently for their flexibility and labeless discriminant manner of operation. The current applications of these technologies are a clear advancement from what they were when first discovered, but also still show strong signs of future growth. The present review article presents a discussion of the current uses of microscale nonlinear EK technologies as analytical, sensing, and purification tools for microorganisms. The discussion is focused on some of the latest discoveries with various nonlinear EK microfluidic techniques, such as DEP particle trapping and EROT for particle assessments, for the analysis of microorganisms ranging from viruses to parasites. Along the way, special focus was given to key research articles from within the past two years to provide the most up-to-date knowledge on the current state-of-the-art within the field of microscale EK, and from there, an outlook on where the future of the field is headed is also included. 相似文献
3.
Cinthia J. Ramirez-Murillo J. Martin de los Santos-Ramirez Victor H. Perez-Gonzalez 《Electrophoresis》2021,42(5):565-587
Dielectrophoretically driven microfluidic devices have demonstrated great applicability in biomedical engineering, diagnostic medicine, and biological research. One of the potential fields of application for this technology is in point-of-care (POC) devices, ideally allowing for portable, fully integrated, easy to use, low-cost diagnostic platforms. Two main approaches exist to induce dielectrophoresis (DEP) on suspended particles, that is, electrode-based DEP and insulator-based DEP, each featuring different advantages and disadvantages. However, a shared concern lies in the input voltage used to generate the electric field necessary for DEP to take place. Therefore, input voltage can determine portability of a microfluidic device. This review outlines the recent advances in reducing stimulation voltage requirements in DEP-driven microfluidics. 相似文献
4.
Mario A. Saucedo‐Espinosa Alexandra LaLonde Aytug Gencoglu Maria F. Romero‐Creel Jay R. Dolas Blanca H. Lapizco‐Encinas 《Electrophoresis》2016,37(2):282-290
A novel scheme for particle separation with insulator‐based dielectrophoresis (iDEP) was developed. This technique offers the capability for an inverted order in particle elution, where larger particles leave the system before smaller particles. Asymmetrically shaped insulating posts, coupled with direct current (DC) biased low‐frequency alternating current (AC) electric potentials, were used to successfully separate a mixture of 500 nm and 1 μm polystyrene particles (size difference of 0.5 μm in diameter). In this separation, the 1 μm particles were eluted first, demonstrating the discriminatory potential of this methodology. To extend this technique to biological samples, a mixture containing Saccharomyces cerevisiae cells (6.3 μm) and 2 μm polystyrene particles was also separated, with the cells being eluted first. The asymmetric posts featured a shorter sharp half and a longer blunt half; this produced an asymmetry in the forces exerted on the particles. The negative DC offset produced a net displacement of the smaller particles toward the upstream direction, while the post asymmetry produced a net displacement of the larger particles toward the downstream direction. This new iDEP approach provides a setup where larger particles are quickly concentrated at the outlet of the post array and can be released first when in a mixture with smaller particles. This new scheme offers an extra set of parameters (alternating current amplitude, DC offset, post asymmetry, and shape) that can be manipulated to obtain a desired separation. This asymmetric post iDEP technique has potential for separations where it is important to quickly elute and enrich larger and more fragile cells in biological samples. 相似文献
5.
Blanca H. Lapizco‐Encinas 《Electrophoresis》2019,40(3):358-375
Insulator‐based dielectrophoresis (iDEP), also known as electrodeless DEP, has become a well‐known dielectrophoretic technique, no longer viewed as a new methodology. Significant advances on iDEP have been reported during the last 15 years. This review article aims to summarize some of the most important findings on iDEP organized by the type of dielectrophoretic mode: streaming and trapping iDEP. The former is primarily used for particle sorting, while the latter has great capability for particle enrichment. The characteristics of a wide array of devices are discussed for each type of dielectrophoretic mode in order to present an overview of the distinct designs and applications developed with iDEP. A short section on Joule heating effects and electrothermal flow is also included to highlight some of the challenges in the utilization of iDEP systems. The significant progress on iDEP illustrates its potential for a large number of applications, ranging from bioanalysis to clinical and biomedical assessments. The present article discusses the work on iDEP by numerous research groups around the world, with the aim of proving the reader with an overview of the state‐of‐the‐art in iDEP microfluidic systems. 相似文献
6.
Fabian O. Romero-Soto Maria I. Polanco-Oliva Roberto C. Gallo-Villanueva Sergio O. Martinez-Chapa Victor H. Perez-Gonzalez 《Electrophoresis》2021,42(5):605-625
Cancer is one of the leading causes of annual deaths worldwide, accounting for nearly 10 million deaths each year. Metastasis, the process by which cancer spreads across the patient's body, is the main cause of death in cancer patients. Because the rising trend observed in statistics of new cancer cases and cancer-related deaths does not allow for an optimistic viewpoint on the future—in relation to this terrible disease—the scientific community has sought methods to enable early detection of cancer and prevent the apparition of metastatic tumors. One such method is known as liquid biopsy, wherein a sample is taken from a bodily fluid and analyzed for the presence of CTCs or other cancer biomarkers (e.g., growth factors). With this objective, interest is growing by year in electrokinetically-driven microfluidics applied for the concentration, capture, filtration, transportation, and characterization of CTCs. Electrokinetic techniques—electrophoresis, dielectrophoresis, electrorotation, and electrothermal and EOF—have great potential for miniaturization and integration with electronic instrumentation for the development of point-of-care devices, which can become a tool for early cancer diagnostics and for the design of personalized therapeutics. In this contribution, we review the state of the art of electrokinetically-driven microfluidics for cancer cells manipulation. 相似文献
7.
Victor H. Perez-Gonzalez 《Electrophoresis》2021,42(23):2445-2464
Electrokinetically driven insulator-based microfluidic devices represent an attractive option to manipulate particle suspensions. These devices can filtrate, concentrate, separate, or characterize micro and nanoparticles of interest. Two decades ago, inspired by electrode-based dielectrophoresis, the concept of insulator-based dielectrophoresis (iDEP) was born. In these microfluidic devices, insulating structures (i.e., posts, membranes, obstacles, or constrictions) built within the channel are used to deform the spatial distribution of an externally generated electric field. As a result, particles suspended in solution experience dielectrophoresis (DEP). Since then, it has been assumed that DEP is responsible for particle trapping in these devices, regardless of the type of voltage being applied to generate the electric field—direct current (DC) or alternating current. Recent findings challenge this assumption by demonstrating particle trapping and even particle flow reversal in devices that prevent DEP from occurring (i.e., unobstructed long straight channels stimulated with a DC voltage and featuring a uniform electric field). The theory introduced to explain those unexpected observations was then applied to conventional “DC-iDEP” devices, demonstrating better prediction accuracy than that achieved with the conventional DEP-centered theory. This contribution summarizes contributions made during the last two decades, comparing both theories to explain particle trapping and highlighting challenges to address in the near future. 相似文献
8.
This article reviews progress in the application of electrophoretic techniques for the separation of nanoparticles. Numerous types of nanoparticles have recently been synthesised and integrated into different products and procedures. Consequently, analytical methods for the efficient characterisation of nanoparticles are now required. Several studies have revealed that gel electrophoresis can readily be used for separating nanoparticles according to their size or shape. However, many other studies focused on separation of nanoparticles by CE. In some cases nanoparticles could be separated by CZE, simply using pure buffer as the BGE. In other studies, buffer additives (most often SDS) were used, enabling fast separations of metallic nanoparticles by size. Other CE methods also allowed for separation of nanoparticle conjugates with biomolecules. Dielectrophoresis is yet another electrophoretic technique useful in separation and characterisation of nanoparticles; particularly nanotubes. Detection methods often used after electrophoretic separation include UV/Vis absorption and fluorescence spectroscopy. Examples of recent and relevant older reports are presented here. The authors conclude that electrophoretic methods for nanoanalysis can provide inexpensive and efficient tools for quality assurance and safety control; and as a consequence, they can augment transfer of nanotechnologies from research to industry. 相似文献
9.
Mathematical modeling is a fundamental component in the development of new microfluidics techniques and devices. Modeling allows for the rapid testing of new system configurations while saving resources. Microscale electrokinetic (EK) techniques have significantly benefited by the advances in modeling programs and software packages. However, EK phenomena are complex to model, as they dynamically affect system characteristics, including the physical properties of the particles and fluid within the system. Insulator‐based dielectrophoresis (iDEP) is an EK technique that has received important attention during the last two decades. In particular, numerous research groups that study iDEP systems employ a combination of modeling and experimentation for developing new iDEP systems. An important fraction of these research groups has adopted the practice of employing “correction factors” to account for EK phenomena that cannot be accurately predicted in their models due to model complexity and limitations in computing resources. The present review article aims to provide the reader with an overview of the most common approaches in the use of correction factors for the modeling of iDEP systems. 相似文献
10.
Preconcentration microfluidic devices are fabricated incorporating straight or convergent-divergent microchannels and hydrogel or Nafion membranes. Sample preconcentration is achieved utilizing concentration-polarization effects. The effects of the microchannel geometry on the preconcentration intensity are systematically examined. It is shown that for the preconcentrator with the straight microchannel, the time required to achieve a satisfactory preconcentration intensity increases with an increasing channel depth. For the convergent-divergent microchannel, the preconcentration intensity increases with a reducing convergent channel width. Comparing the preconcentration performance of the two different microchannel configurations, it is found that for an equivalent width of the main microchannel, the concentration effect in the convergent-divergent microchannel is faster than that in the straight microchannel. 相似文献
11.
A simple method to perform selective on-line preconcentration of protein samples in capillary electrophoresis (CE) is described. The selectivity, based on protein electrophoretic mobility, was achieved by controlling electroosmotic flow (EOF). A short section of dialysis hollow fiber, serving as a porous joint, was connected between two lengths of fused silica capillary. High voltage was applied separately to each capillary, and the EOF in the system was controlled independently of the local electric field intensity by controlling the total voltage drop. An equation relating the EOF with the total voltage drop was derived and evaluated experimentally. On-line preconcentration of both positively charged and negatively charged model proteins was demonstrated without using discontinuous background electrolytes, and protein analytes were concentrated by approximately 60-200-fold under various conditions. For positively charged proteins, positive voltages of the same magnitude were applied at the free ends of the connected capillaries while the porous joint was grounded. This provided a zero EOF in the system and a non-zero local electric field in each capillary to drive the positively charged analytes to the porous joint. CE separation was then initiated by switching the polarity of the high voltage over the second capillary. For negatively charged proteins, the procedure was the same except negative voltages were applied at the free ends of the capillaries. Mobility-based selective on-line preconcentration was also demonstrated with two negatively charged proteins, i.e. beta-lactoglobulin B and myoglobin. In this case, negative voltages of different values were applied at the free ends of the capillaries with different values, which provided a non-zero EOF in the system. The direction of EOF was the same as that of the electrophoretic migration velocities of the protein analytes in the first capillary and opposite in the second capillary. By controlling the EOF, beta-lactoglobulin B, which has a higher mobility, could be concentrated over 150-fold with a 15 min injection while myoglobin, which has a lower mobility, was eliminated from the system. 相似文献
12.
Ronald Pethig 《Electrophoresis》2019,40(18-19):2575-2583
Dielectrophoresis (DEP) studies have progressed from the microscopic scale of cells and bacteria, through the mesoscale of virions to the molecular scale of DNA and proteins. The Clausius‐Mossotti function, based on macroscopic electrostatics, is invariably employed in the analyses of all these studies. The limitations of this practice are explored, with the conclusion that it should be abandoned for the DEP study of proteins and modified for native DNA. For macromolecular samples in general, a DEP theory that incorporates molecular‐scale interactions and the influence of permanent dipoles is more appropriate. Experimental ways to test these conclusions are proposed. 相似文献
13.
Thomas Jacroux Danny Bottenus Bennett Rieck Cornelius F. Ivory Wen‐ji Dong 《Electrophoresis》2014,35(14):2029-2038
Cationic ITP was used to separate and concentrate fluorescently tagged cardiac troponin I (cTnI) from two proteins with similar isoelectric properties in a PMMA straight‐channel microfluidic chip. In an initial set of experiments, cTnI was effectively separated from R‐Phycoerythrin using cationic ITP in a pH 8 buffer system. Then, a second set of experiments was conducted in which cTnI was separated from a serum contaminant, albumin. Each experiment took ~10 min or less at low electric field strengths (34 V/cm) and demonstrated that cationic ITP could be used as an on‐chip removal technique to isolate cTnI from albumin. In addition to the experimental work, a 1D numerical simulation of our cationic ITP experiments has been included to qualitatively validate experimental observations. 相似文献
14.
Suman Chakraborty 《Electrophoresis》2019,40(1):180-189
Microfluidics based lab‐on‐a‐chip technology holds tremendous promises towards point‐of‐care diagnosis of diseases as well as for developing engineered devices aimed towards replicating the intrinsic functionalities of human bodies as mediated by blood vessel mimicking circulatory networks. While the analysis of transport of blood including its unique cellular constituents has remained to be the focus of many reported studies, a progressive interest on understanding the interplay between electric field and blood flow dynamics has paved a new way towards further developments from scientific engineering as well as clinical viewpoint. Here, we briefly outline the interconnection between electrokinetics and blood flow through micro‐capillaries, in an effort to address several challenging propositions in a wide variety of applications encompassing biophysical transport to medical diagnostics. We first present the fundamentals of interaction of electric field with cellular components. In conjunction with the unique rheological features of blood, we show that this interaction may turn out to be compelling for the use of electric fields for transporting blood samples through microfluidic conduits. We discuss the perspectives of both direct current and alternating current electrokinetics in the context of blood flow. In addition, we provide a brief outline of the concerned theoretical developments. We also bring out the relevant biophysical perspectives and focus on applications such as blood plasma separation and separation of circulatory tumor cells. Finally, we attempt to provide a futuristic outlook and envisage the potential of combining electrokinetics with blood microcirculation towards developing futuristic biomimetic microdevices that can replicate a novel control mechanism over micro‐circulatory transport in the entire connective network of human bodies. This may effectively pave the way towards the realization of a next‐generation medical simulation device, significantly advanced from what is available under the ambit of the state of art technology in the field. 相似文献
15.
This article presents a numerical study of the electrokinetic transport phenomena (electroosmosis and electrophoresis) in a three-dimensional nanochannel with a circular cross-section. Due to the nanometer dimensions, the Boltzmann distribution of the ions is not valid in the nanochannels. Therefore, the conventional theories of electrokinetic flow through the microchannels such as Poisson-Boltzmann equation and Helmholtz-Smoluchowski slip velocity approach are no longer applicable. In the current study, a set of coupled partial differential equations including Poisson-Nernst-Plank equation, Navier-Stokes, and continuity equations is solved to find the electric potential field, ionic concentration field, and the velocity field in the three-dimensional nanochannel. The effects of surface electric charge and the radius of nanochannel on the electric potential, liquid flow, and ionic transport are investigated. Unlike the microchannels, the electric potential field, ionic concentration field, and velocity field are strongly size-dependent in nanochannels. The electric potential gradient along the nanochannel also depends on the surface electric charge of the nanochannel. More counter ions than the coions are transported through the nanochannel. The ionic concentration enrichment at the entrance and the exit of the nanochannel is completely evident from the simulation results. The study also shows that the flow velocity in the nanochannel is higher when the surface electric charge is stronger or the radius of the nanochannel is larger. 相似文献
16.
Gold nanospheres modified with bifunctional molecules have been separated and characterized by using agarose gel electrophoresis as well as optical spectroscopy and electron microscopy. The electrophoretic mobility of a gold nanosphere capped with 11‐mercaptoundecanoic acid (MUA) has been found to depend on the number of MUA molecules per gold nanosphere, indicating that it increases with the surface charge of the nanoparticle. The extinction spectrum of gold nanospheres capped with MUA at an MUA molecules per gold nanosphere value of 1000 and connected via 1,6‐hexanedithiol (HDT) decreases by 33% in magnitude and shifts to the red as largely as 22 nm with the increase of the molar ratio of HDT to MUA (RHM). Gold nanospheres capped with MUA and connected via HDT have been separated successfully using gel electrophoresis and characterized by measuring reflectance spectra of discrete electrophoretic bands directly in the gel and by monitoring transmission electron microscope images of gold nanoparticles collected from the discrete bands. Electrophoretic mobility has been found to decrease substantially with the increment of HDT to MUA, indicating that the size of aggregated gold nanoparticles increases with the concentration of HDT. 相似文献
17.
Jun Yang 《Analytica chimica acta》2004,507(1):39-53
Microfluidics in microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) devices is complex due to the large surface area to volume ratio. Thus, surface properties play an important role in flow behavior. In this paper, we summarize the effects of electric double layer and surface hydrophobicity of rectangular microchannels on time-dependent electrokinetic flow. Theoretically, we have shown that flow resistance can, in principal, be significantly reduced so that a larger flow rate can be obtained for pressure-driven flow or electric-field-driven flow. This relies on the ability to change surface charges and surface hydrophobicity independently. Our theoretical results provide guidelines for the design and operation of microfluidic flow in rectangular microchannels. Because of liquid slippage, zeta potential determination by traditional method could be overestimated. Taking into account the effect of hydrophobicity, a modified method is proposed to determine the zeta potential and slip coefficient for parallel-plate microchannels with hydrophobic surfaces. 相似文献
18.
Trace amounts of aluminium in aqueous samples can be determined by ion chromatography using ammonium sulphate-nitric acid as eluent and pyrocatechol violet as post-column chromogenic reagent. The detection limit for a 50-μl sample is 10 μg 1?1. Preconcentration of the sample (obtained by replacing the sampling loop with a short ion-exchange column) allows larger amounts of sample to be loaded and lowers the detection limit below 1 μg 1?1. 相似文献
19.
Paumier G Sudor J Gue AM Vinet F Li M Chabal YJ Estève A Djafari-Rouhani M 《Electrophoresis》2008,29(6):1245-1252
We report on a novel approach for controlling nanohydrodynamic properties at the solid-liquid interfaces through the use of stimuli-responding polymer coatings. The end-tethered polymers undergo a phase separation upon external activation. The reversible change in the thickness and polarity of the grafted polymers yields in a dynamic control of the surface-generated, electrokinetic phenomena. Nonactivated, swollen polymers are thicker than the electrical double layer (EDL) and prohibit the development of an EOF even on charged surfaces. On the other hand, activated polymer chains shrink and become thinner than the EDL and allow for the EOF to build up unimpeded. We show here that, for given experimental conditions, the EOF velocity on the shrunken surface is 35 times greater than the one on the nonactivated surface. Furthermore, we reveal that coupling of such surfaces with dense arrays of thermal actuators developed in our laboratory can lead to novel micro- and nanofluidic devices. 相似文献
20.
Hiroyuki Ohshima 《Colloid and polymer science》2007,285(13):1411-1421
Theories of electrokinetics of soft particles, which are particles covered with an ion-penetrable surface layer of polyelectrolytes,
are reviewed. Approximate analytic expressions are given, which describe various electrokinetics of soft particles both in
dilute and concentrated suspensions, that is, electrophoretic mobility, electrical conductivity, sedimentation velocity and
potential, dynamic electrophoretic mobility, colloid vibration potential, and electrophoretic mobility under salt-free condition. 相似文献