首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The first reported sodium alkyl(TMP)aluminate reagent to be synthesised and crystallographically characterised, [TMEDA.Na(mu-TMP)(mu-(I)Bu)Al((I)Bu)2], reacts as an amido base towards phenylacetylene to form crystalline [(TMEDA)2.Na(mu-CCPh)(mu-(I)Bu)Al((I)Bu)2]; whereas the congeneric TMEDA-stabilised lithium (TMP)aluminate exhibits dual alkyl/amido basicity in its reaction with N,N-diisopropylbenzamide to form a novel heterobimetallic-heterotrianionic crystalline complex [{PhC(=O)N(iPr)2}.Li{2-[1-C(=O)N(iPr)2]C6H4}{Me2NCH2CH2N(Me)CH2}Al(iBu)2], which, in addition to having an ortho-deprotonated benzamide ligand, also contains a methyl-deprotonated TMEDA ligand and a neutral benzamide molecule ligated to lithium.  相似文献   

2.
Organolithium compounds play the leading role among the organometallic reagents in synthesis and in industrial processes. Up to date industrial application of methyllithium is limited because it is only soluble in diethyl ether, which amplifies various hazards in large-scale processes. However, most reactions require polar solvents like diethyl ether or THF to disassemble parent organolithium oligomers. If classical bidentate donor solvents like TMEDA (TMEDA= N,N,N',N'tetramethyl-1,2-ethanediamine) or DME (DME=1,2-dimethoxyethane) are added to methyllithium, tetrameric units are linked to form polymeric arrays that suffer from reduced reactivity and/or solubility. In this paper we present two different approaches to tune methyllithium aggregation. In [[(MeLi)4(dem)1,5)infinity] (1; DEM = EtOCH2OEt, diethoxymethane) a polymeric architecture is maintained that forms microporous soluble aggregates as a result of the rigid bite of the methylene-bridged bidentate donor base DEM. Wide channels of 720 pm in diameter in the structure maintain full solubility as they are coated with lipophilic ethyl groups and filled with solvent. In compound 1 the long-range Li3CH3...Li interactions found in solid [[(MeLi)4]infinity] are maintained. A different approach was successful in the disassembly of the tetrameric architecture of [((MeLi)4]infinity]. In the reaction of dilithium triazasulfite both the parent [(MeLi)4] tetramer and the [[Li2[(NtBu)3S]]2] dimer disintegrate and recombine to give an MeLi monomer stabilized in the adduct complex [(thf)3Li3Me-[(NtBu)3S]] (2). One side of the Li3 triangle, often found in organolithium chemistry, is shielded by the tripodal triazasulfite, while the other face is mu3-capped by the methanide anion. This Li3 structural motif is also present in organolithium tetramers and hexamers. All single-crystal structures have been confirmed through solid-state NMR experiments to be the same as in the bulk powder material.  相似文献   

3.
Various 2-thienyllithium derivatives were investigated in the solid state by X-ray diffraction and in solution by 2D NMR experiments. The determined structures of [(Et(2)O)Li(C(4)H(3)S)](4) (1), [(THF)(2)Li(C(4)H(3)S)](2) (2), [(DME)Li(C(4)H(3)S)](2) (3), [(TMEDA)Li(C(4)H(3)S)](2) (4), and [(PMDETA)Li(C(4)H(3)S)] (5) (DME = 1,2-dimethoxyethane, TMEDA = N,N,N',N'-tetramethylethylene-1,2-diamine, and PMDETA = N,N,N',N",N"-pentamethyldiethylenetriamine) were solved in nondonating toluene and provide firm ground for diffusion-ordered NMR spectroscopy as well as heteronuclear Overhauser enhancement NMR spectroscopy. The distance relation of nuclear Overhauser effects with a factor of r(-6) is employed to gain further insight into the aggregation degree of 1-5 in solution. Comparison of the slope provided by the linear region of the buildup curves and of the ∑r(-6) calculated distances from the crystal structures offers a handle to judge the structure retention versus conversion in solution. The structures of 3-5 are maintained in toluene solution. The data of 2, however, indicate a partial dissociation or a rapid exchange between the vertices of a tetrameric core and free THF molecules. Auxiliary exchange spectroscopy investigations showed that the signals of the nitrogen donor base containing compounds 4 and 5 exchange with the signals of nonlithiated thiophene. This is explained by exchange of the deuterium by a hydrogen atom via lithiation of toluene molecules.  相似文献   

4.
Marr F  Hoppe D 《Organic letters》2002,4(24):4217-4220
[reaction: see text] (S)-S-(2-Cyclohexenyl) N,N-diisopropylmonothiocarbamate [(-)-(S)-8] was deprotonated by sec-butyllithium/TMEDA to form a configurationally stable lithium compound (S)-9, which is the first example of a new class of alpha-thio-substituted organolithium compounds with improved properties. It is regioselectively alkylated by alkyl halides with complete stereoinversion to form the monothiocarbamates (+)-10 which afford highly enantioenriched tertiary 2-cyclohexene-1-thiols (+)-6 on reductive cleavage.  相似文献   

5.
Reaction of HN(PiPr2)2 with one equivalent of selenium in hexane at room temperature yields the monoselenide as the P-H tautomer Se=PiPr2-N=P(H)iPr2 (2b). Deprotonation of 2b with n butyllithium in the presence of TMEDA at -78 degrees C followed by addition of tellurium produces the air-sensitive, mixed chalcogenido complex [(TMEDA)Li(SePiPr2)(TePiPr2)N] (8Li) in >97% purity after recrystallisation. Similarly, deprotonation of Te=PiPr2-N=P(H)iPr2 (2c), followed by addition of sulfur, gives the sulfur analogue [(TMEDA)Li(SPiPr2)(TePiPr2)N] (7Li) in >99% purity. The symmetrical complexes [(TMEDA)Li(SePiPr2)2N] (4Li) and [(TMEDA)Li(TePiPr2)2N] (5Li) are produced by similar methods. Compounds 2b, 4Li, 5Li, 7Li and 8Li were characterised in solution by multinuclear (1H, 31P, 77Se and 125Te) NMR spectroscopy and their solid-state structures were determined by X-ray crystallography. The X-ray crystal structures of the polymeric chains [NaN(EPiPr2)2]infinity (4Na, E = Se and 5Na, E = Te) are also reported.  相似文献   

6.
The first heavy-alkali-metal tris(trimethylsilyl)germanides were obtained in high yield and purity by a simple one-pot reaction involving the treatment of tetrakis(trimethylsilyl)germane, Ge(SiMe3)4, with various alkali metal tert-butoxides. The addition of different sizes of crown ethers or the bidentate TMEDA (TMEDA=N,N,N',N'-tetramethylethylenediamine) provided either contact or separated species in the solid state, whereas in aromatic solvents the germanides dissociate into separated ions, as shown by 29Si NMR spectroscopic studies. Here we report on two series of germanides, one displaying M-Ge bonds in the solid state with the general formula [M(donor)n Ge(SiMe3)3] (M=K, donor=[18]crown-6, n=1, 1; Rb, donor=[18]crown-6, n=1, 4; and M=K, donor=TMEDA, n=2, 6). The silicon analogue of 6, [K(tmeda)2Si(SiMe3)3] (7) is also included to provide a point of reference. The second group of compounds consists of separated ions with the general formula [M(donor)2][Ge(SiMe3)3] (M=K, donor=[15]crown-5, 2; M=K, donor=[12]crown-4, 3; and M=Cs, donor=[18]crown-6, 5). While all target compounds are highly sensitive towards hydrolysis, use of the tridentate nitrogen donor PMDTA (PMDTA=N,N,N',N',N'-pentamethyldiethylenetriamine) afforded even more reactive species of the composition [K(pmdta)2Ge(SiMe3)3] (8). We also include the silanide analogue [K(pmdta)2Si(SiMe3)3] (9) for sake of comparison. The compounds were typically characterized by X-ray crystallography, and 1H, 13C, and 29Si NMR and IR spectroscopy, unless extremely high reactivity, as observed for the PMDTA adducts 8 and 9, prevented a more detailed characterization.  相似文献   

7.
Reaction of 2‐isopropyl‐(N,N‐diisopropyl)‐benzamide 5 with tBuLi in ether results in ortho deprotonation and the formation of a hemisolvate based on a tetranuclear dimer of ( 5 ‐Lio)2?Et2O. The solid‐state structure exhibits a dimer core in which the amide oxygen atoms fail to stabilize the metal ions but are instead available for interaction with two metalated monomers that reside peripheral to the core. Reaction of 5 with tBuLi in the presence of the tridentate Lewis base PMDTA (N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine) takes a different course. In spite of the tertiary aliphatic group at the 2‐position in 5 , X‐ray crystallography revealed that a remarkable benzylic (lateral) deprotonation had occurred, giving the tertiary benzyllithium 5 ‐Lil?PMDTA. The solid‐state structure reveals that amide coordination and solvation by PMDTA combine to distance the Li+ ion from the deprotonated α‐C of the 2‐iPr group (3.859(4) Å), thus giving an essentially flat tertiary carbanion and a highly distorted aromatic system. DFT analysis suggests that the metal ion resides closer to the carbanion center in solution. In line with this, the same (benzylic) deprotonation is noted if the reaction is attempted in the presence of tridentate diglyme, with X‐ray crystallography revealing that the metal is now closer to the tertiary carbanion (2.497(4) Å). Electrophilic quenches of lithiated 5 have allowed, for the first time, the formation of quaternary benzylic substituents by lateral lithiation.  相似文献   

8.
The tetraanilino phosphonium cation, [P(N(H)Ph)4]+, 1+, is sequentially deprotonated by Bu(n)Li in thf. The deprotonation reaction of the chloride derivative, Cl, was monitored by (31)P NMR, which revealed the successive formation of the neutral [P(N(H)Ph)3(NPh)], 2, the monoanionic [P(N(H)Ph)2(NPh)2]-, 3-, the dianionic [P(N(H)Ph)(NPh)3]2-, 4(2-), and finally the trianionic species [P(NPh)(4)](3-), (3-). Considering the isoelectronic relationship of oxo, =O, and imino groups, =NR, as well as hydroxy, -OH, and amino groups, -N(H)R, the neutral complex corresponds to phosphoric acid, H3PO4, whereas the anions 3-, 4(2-) and 5(3-) are analogues of dihydrogen phosphate, H2PO4-, monohydrogenphosphate, HPO4(2-), and orthophosphate ions, PO4(3-), respectively. Solid state structures were obtained of 1Cl, 2LiCl(thf)(2), 3Li(thf)(3.5), 3Li(2)Cl(thf)(4.25), 3Li(2)Cl(thf)(6) and 5Li(4)Cl(thf)(4). All systems provide two separate N-P-N chelation sites at opposite ligand faces, either consisting of the di(amino) arrangement P(NH)(2), acting as a double H-bond donor, the di(imino) arrangement PN(2), donating two electron pairs, or the mixed amino imino arrangement P(N)(NH), which supplies both electron pair and H-donor site. Interesting in this aspect is the mixed amino imino derivative 3- which has the ability to chelate a Lewis acid, such as a metal ion, at one face and a Lewis base, such as an anionic or neutral donor at the opposite ligand face. The formation of 1-D aggregates and the entrapment of lithium chloride are key characteristics of the supramolecular structures of the discussed complexes.  相似文献   

9.
The surprising transformation of the saturated diamine (iPr)NHCH(2)CH(2)NH(iPr) to the unsaturated diazaethene [(iPr)NCH═CHN(iPr)](2-) via the synergic mixture nBuM, (tBu)(2)Zn and TMEDA (where M = Li, Na; TMEDA = N,N,N',N'-tetramethylethylenediamine) has been investigated by multinuclear NMR spectroscopic studies and DFT calculations. Several pertinent intermediary and related compounds (TMEDA)Li[(iPr)NCH(2)CH(2)NH(iPr)]Zn(tBu)(2) (3), (TMEDA)Li[(iPr)NCH(2)CH(2)CH(2)N(iPr)]Zn(tBu) (5), {(THF)Li[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)}(2) (6), and {(TMEDA)Na[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)}(2) (11), characterized by single-crystal X-ray diffraction, are discussed in relation to their role in the formation of (TMEDA)M[(iPr)NCH═CHN(iPr)]Zn(tBu) (M = Li, 1; Na, 10). In addition, the dilithio zincate molecular hydride [(TMEDA)Li](2)[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu)H 7 has been synthesized from the reaction of (TMEDA)Li[(iPr)NCH(2)CH(2)NH(iPr)]Zn(tBu)(2)3 with nBuLi(TMEDA) and also characterized by both X-ray crystallographic and NMR spectroscopic studies. The retention of the Li-H bond of 7 in solution was confirmed by (7)Li-(1)H HSQC experiments. Also, the (7)Li NMR spectrum of 7 in C(6)D(6) solution allowed for the rare observation of a scalar (1)J(Li-H) coupling constant of 13.3 Hz. Possible mechanisms for the transformation from diamine to diazaethene, a process involving the formal breakage of four bonds, have been determined computationally using density functional theory. The dominant mechanism, starting from (TMEDA)Li[(iPr)NCH(2)CH(2)N(iPr)]Zn(tBu) (4), involves the formation of a hydride intermediate and leads directly to the observed diazaethene product. In addition the existence of 7 in equilibrium with 4 through the dynamic association and dissociation of a (TMEDA)LiH ligand, also provides a secondary mechanism for the formation of the diazaethene. The two reaction pathways (i.e., starting from 4 or 7) are quite distinct and provide excellent examples in which the two distinct metals in the system are able to interact synergically to catalyze this otherwise challenging transformation.  相似文献   

10.
Sequential reaction of HTMP (= 2,2,6,6-tetramethylpiperidine) with nBuLi and Et2Zn affords unsolvated polymer chains of EtZn(micro-Et)(micro-TMP)Li 6. The scope of this reagent in directed ortho metalation (DoM) chemistry has been tested by its reaction with N,N-diisopropylnaphthamide in THF to give EtZn(micro-C10H6C(O)NiPr2-2)2Li.2THF 7. Data reveal that 6 has undergone reaction with 2 equiv of aromatic tertiary amide and imply that it exhibits dual alkyl/amido basicity. DFT calculations reveal that direct alkyl basicity is kinetically disfavored and instead point to a stepwise mechanism whereby 6 acts as an amido base, liberating HTMP during the first DoM event. Re-coordination of the amine at lithium then incurs the elimination of EtH. Reaction of the resulting alkyl(amido)(arylamido)zincate with a second equivalent of N,N-diisopropylnaphthamide eliminates HTMP and affords 7. Both DoM steps involve the exhibition of amido basicity and each reveals a low kinetic barrier to reaction. Understanding of this reaction sequence is tested by treating 6 with N,N-diisopropylbenzamide in THF. On the basis of theory and experiment, the presence of THF solvent (in place of stronger Lewis bases) combined with the use of a sterically less congested aromatic amide is expected to encourage threefold, stepwise reaction. Isolation and characterization of the resulting tripodal zincate Zn(micro-C6H4C(O)NiPr2-2)3Li.THF 8 bears this out and suggests a significant new level of control in zincate-induced DoM chemistry through the combination of experiment and DFT studies.  相似文献   

11.
Lithium TMP-aluminate "(i)Bu(3)Al(TMP)Li" undergoes dismutation in THF solution to precipitate the tetraalkylaluminate [{Li.(THF)(4)}(+){Al((i)Bu)(4)}(-)], but reacts kinetically as a TMP base towards N,N-diisopropylbenzamide to afford the crystalline ortho-aluminated species [(THF)(3).Li{O([=C)N((i)Pr)(2)(C(6)H(4))}Al((i)Bu)(3)] and TMPH.  相似文献   

12.
An extended family of aryl-substituted alkaline earth metal silylamides M{N(2,4,6-Me3C6H2)(SiMe3)}donor(n) was prepared using alkane elimination (Mg), salt elimination (Ca, Sr, Ba), and direct metalation (Sr, Ba). Three different donors, THF, TMEDA (TMEDA = N,N,N',N'-tetramethylethylenediamine), and PMDTA (PMDTA = N,N,N',N',N'-pentamethyldiethylenetriamine) were employed to study their influence on the coordination chemistry of the target compounds, producing monomeric species with the composition M{N(2,4,6-Me3C6H2)(SiMe3)}2(THF)2 (M = Mg, Ca, Sr, Ba), M{N(2,4,6-Me3C6H2)(SiMe3)}2TMEDA (M = Ca, Ba), and M{N(2,4,6-Me3C6H2)(SiMe3)}2PMDTA (M = Sr, Ba). For the heavier metal analogues, varying degrees of agostic interactions are completing the coordination sphere of the metals. Compounds were characterized using IR and NMR spectroscopy in addition to X-ray crystallography.  相似文献   

13.
The metathetical reaction of [Li(TMEDA)][HC(PPh(2)Se)(2)] ([Li(TMEDA)]1) with TlOEt in a 1:1 molar ratio afforded a homoleptic Tl(I) complex as an adduct with LiOEt, Tl[HC(PPh(2)Se)(2)]·LiOEt (7), which undergoes selenium-proton exchange upon mild heating (60 °C) to give the mixed-valent Tl(I)/Tl(III) complex {[Tl][Tl{(Se)C(PPh(2)Se)(2)}(2)]}(∞) (8). Treatment of TlOEt with [Li(TMEDA)](2)[(SPh(2)P)(2)CE'E'C(PPh(2)S)(2)] (3b, E' = S; 3c, E' = Se) in a 2:1 molar ratio produced the binuclear Tl(i)/Tl(i) complexes Tl(2)[(SPh(2)P)(2)CE'E'C(PPh(2)S)(2)] (9b, E' = S; 9c, E' = Se), respectively. Selenium-proton exchange also occurred upon addition of [Li(TMEDA)]1 to InCl(3) to yield the heteroleptic complex (TMEDA)InCl[(Se)C(PPh(2)Se)(2)] (10a). Other examples of this class of In(III) complex, (TMEDA)InCl[(E')C(PPh(2)E)(2)] (10b, E = E' = S; 10c, E = S, E' = Se) were obtained via metathesis of InCl(3) with [Li(TMEDA)](2)[(E')C(PPh(2)E)(2)] (2b, E = E' = S; 2c, E = S, E' = Se, respectively). All new compounds have been characterized in solution by (1)H and (31)P NMR spectroscopy and the solid-state structures have been determined for 8, 9c and 10a-c by single-crystal X-ray crystallography. Complex 8 is comprised of Tl(+) ions that are weakly coordinated to octahedral [Tl{(Se)C(PPh(2)Se)(2)}(2)](-) anions to give a one-dimensional polymer. The complex 9c is comprised of two four-coordinate Tl(+) ions that are each S,S',S',Se bonded to the hexadentate [(SPh(2)P)(2)CSeSeC(PPh(2)S)(2)](2-) ligand in which d(Se-Se) = 2.531(2) ?. The six-coordinate In(III) centres in the distorted octahedral complexes 10a-c are connected to a tridentate [(E')C(PPh(2)E)(2)](2-) dianion, a chloride ion and a neutral bidentate TMEDA ligand.  相似文献   

14.
Tridentate Schiff base (H(2)L) ligand was synthesized via condensation of o-hydroxybenzaldehyde and 2-aminothiophenol. The metal complexes were prepared from reaction of the ligand with corresponding metal salts presence of substituted pyridine in two different solvents (MeOH or MeCN). The ligand and metal complexes were then characterized by using FTIR, TGA, (1)H NMR and (13)C NMR spectroscopies. The FTIR spectra showed that H(2)L was coordinated to the metal ions in tridentate manner with ONS donor sites of the azomethine N, deprotonated phenolic-OH and phenolic-SH. Furthermore, substituted pyridine was coordinated to the central metal atoms. The thermal behavior of the complexes was investigated by using TGA method and dissociations indicated that substituted pyridine and ligand were leaved from coordination. This coordination of the metal complexes was correlated by (1)H NMR and (13)C NMR. Finally, electrochemical behavior of the ligand and a Ni(II) complex were investigated.  相似文献   

15.
Substituted cis-bicyclo[3.3.0]octenyllithium prepared by addition of t-BuLi to 3-methylene-1,4-cyclooctadiene in the presence of TMEDA crystallizes as a dimer with one unsolvated Li(+) sandwiched between the external faces of two allyl anions in a triple ion, and external to it the second Li(+) is bidentately complexed to TMEDA, 8. Within each allyl unit, the allyl bonds have different lengths, and all four rings deviate from coplanarity which relieves strain in the rings despite introducing partial localization of the allyl anions. A similar structure prevails in solution as shown by (7)Li NMR and the results of (7)Li{(1)H} HOESY and (1)H, (1)H NOESY experiments. Carbon-13 NMR line shape changes indicate that the system undergoes a fast allyl bond shift concerted with conformation shifts of the out of plane carbons, ca. DeltaG = 9 kcal x mol(-1). Cyclopentyllithium prepared by CH(3)Li cleavage of the trimethylstannyl derivative slowly undergoes an allowed ring opening to pentadienyllithium as well as deprotonating the solvent. The different behavior of dienylic lithium species is attributed to the relative separation of their termini.  相似文献   

16.
Reactions of Nitriles with tBuAsLi2 tBuAsLi2 reacts with the α‐acidic nitrile malonicaciddinitrile in THF/TMEDA under deprotonation and formation of the coordination polymer [{Li(TMEDA}{HC(CN)2}]n ( 1 ). The more base‐stable PhCN gives with tBuAsLi2 under aromatization the salt [Li(Diglyme)2][Li(TMEDA){As[NC(Ph)NC(Ph)]}2] ( 2 ), containing a diazaarsolide. 1 and 2 were characterized by NMR and vibrational spectroscopy, mass spectrometry and X‐ray analyses. According to that, 1 contains in the solid state infinite helical chains of cations and anions, running along [010]. 2 consists of distorted octahedrally coordinated Li+ ion, [Li(diglyme)2]+, and the complex anion [Li(TMEDA){As[NC(Ph)NC(Ph)]}2] with a distorted tetrahedrally environment of the Li+ ion.  相似文献   

17.
Six lead xanthate adducts Pb(S(2)COR)(2).L [R = Et, (n)Bu, L = bipy, TMEDA (tetramethylethylenediamine), PMDETA (pentamethyldiethylenetriamine)] have been synthesised and the structures of all, save Pb(S(2)COBu(n))(2).TMEDA (4) which is an oil, determined. Pb(S(2)COEt)(2).TMEDA (3) is seven-coordinate at lead through three chelating ligands and one weak intermolecular Pb‥S interaction. Both Pb(S(2)COR)(2).bipy [R = Et (1), (n)Bu (2)] are dimers in which one xanthate is terminal and the other μ(2) bridging at each sulphur, generating an eight-coordinate lead when the bipy donor is included. Both Pb(S(2)COR)(2).PMDETA [R = Et (5), (n)Bu (6)] are seven-coordinate at lead by virtue of two bidentate chelating xanthate ligands and a tridentate PMDETA; there are no intermolecular interactions. Trends in the (207)Pb NMR chemical shifts mirror the changes in the intramolecular coordination number across the series. Pb(S(2)COEt)(2).TMEDA (3) has been used to deposit PbS films on glass, Mo-coated glass and Si by AACVD. Pb(S(2)COEt)(2) also generated PbS nanocubes when decomposed under an autogenerated pressure.  相似文献   

18.
On the basis of (7)Li NMR measurements, we have made detailed studies on the influence of the ionic liquids [emim][NTf(2)], [emim][ClO(4)], and [emim][EtSO(4)] on the complexation of Li(+) by the bidentate N-donor ligands 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). For each of the employed ionic liquids the NMR data implicate the formation of [Li(bipy)(2)](+) and [Li(phen)(2)](+), respectively. X-ray diffraction studies were performed to determine the coordination pattern in the solid state. In the case of [emim][ClO(4)] and [emim][EtSO(4)], crystal structures confirmed the NMR data, resulting in the complexes [Li(bipy)(2)ClO(4)] and [Li(phen)(2)EtSO(4)], respectively. On the contrary, the ionic liquid [emim][NTf(2)] generated the C(i) symmetric, dinuclear, supramolecular cluster [Li(bipy)(NTf(2))](2), where the individual Li(+) centers were found to be bridged by two [NTf(2)] anions. Density functional theory (DFT)-calculations lead to further information on the effect of stacking on the coordination geometry of the Li(+) centers.  相似文献   

19.
Proton, 13C, 6Li, and 15N NMR line-shape studies of exo,exo-1-trimethylsilyl-3-(dimethylethylsilyl)allyllithium-6Li complexed to [14N,15N]-N,N,N',N'-tetramethylethylenediamine (TMEDA) 2 as a function of temperature and of added diamine reveal the dynamics of three fast equilibrium reorganization processes. These are (with DeltaH values in kilocalories per mole and DeltaS values in entropic units): mutual exchange of lithium between two 2 molecules (6.3, -21), exchange of TMEDA between its free and complexed states (5.0 and -22), and first-order transfer of complexed ligand between the allyl faces (7.0 and -20). Intermediates that are dimeric in TMEDA are proposed for the first two of these reorganization processes.  相似文献   

20.
The method of continuous variation was used to characterize lithium enolates, phenolates, carboxylates, and alkoxides solvated by N,N,N',N'-tetramethylethylenediamine (TMEDA). The method relies on characterizing an ensemble of homo- and heteroaggregates using (6)Li NMR spectroscopy. A combination of aggregate counts and symmetries, nearly statistical distributions, and quantitative parametric fits revealed that cyclic dimers are the dominant forms. Nonstatistical distributions favoring heteroaggregated dimers were observed when hindered enolates and carboxylates were mixed with unhindered enolates. Hindered (tertiary) alkoxides form higher aggregates (possibly hexamers), whereas hindered lithium phenolates appear to form TMEDA-solvated monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号