首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
A methodology for refining the crystal structure of sillenites of nominal composition Bi24 M 2O40 based on the choice of the correct initial model and thermal atomic parameters is reported. The validity of the approach proposed is demonstrated by examples of crystals with M = Si, Fe, or V, for which the real composition is found with allowance for the composition of each structural site. Individual structural details are confirmed by IR and Raman spectroscopy data.  相似文献   

2.
Photorefractive Bi12TiO20 single crystals of high optical quality were grown in a resistive heating furnace from high temperature nonstoichiometric (10:1) solutions of Bi2O3 and TiO2 at pulling rates 0.3–0.8 mm/h at rotation 20–30 rpm along the <001> and <011> axis. Powder X-ray analysis, Laue method, and electron-probe microanalysis were used for characterization. BTO crystals have the bcc structure of sillenite type with a0 = 10.178(8) Å. The chemical composition of the crystals can be written down as Bi12.1 ± 0.2Tio0.96 ± 0.09O20.1. Natural optical activity ρ of BTO crystals is 6.3 ± 0.2 deg/mm at λ = 0.633 μm and 11.9 ± 0.2 deg/mm at λ = 0.5145 μm, optical absorption coefficient α = 0.42 ± 0.04 cm−1 at λ = 0.633 μm and linear electro-optic coefficient r41 = r52 = r63 = 5.3 pm/V. Fanning effect in the “fiber-like” BTO sample was studied and double phase conjugation with conversion efficiency up to 8% was observed in a wide range of incidence angles of the pump at λ = 0.633 μm for 2 × 3 mW input light power.  相似文献   

3.
The boron sillenite, up to now known as the 12:1 compound Bi24B2O39 in the system Bi2O3 – B2O3 andcrystallizing in the space group I23, melts incongruently at 655 °C only about 25 K above the eutectic tie line and corresponding to a steep liquidus line. Single crystals with dimensions larger then 1 cm 3 have been successfully grown in [100], [110], and [111] direction by an improved Top Seeded Solution Growth (TSSG) technique equipped with crucible weighing, accelerated crystal rotation technique and air‐cooled pulling rod. The structure of the boron sillenite was analyzed by X‐ray diffraction method, which was possible due to the high crystalline quality achieved. A defect‐free sublattice corresponding to a Bi‐O framework is isostructural with all sillenites, but a 2 Å environment around the origin is occupied by different cations with different population coefficients. The best calculation results in the formula Bi24.5BO38.25 which is more Bi‐rich than the 12:1 assumption.  相似文献   

4.
Glasses of the system: xBi2O3-(100−x)B2O3 (x = 20 to 66 mol%) were prepared and characterized by density, DSC, UV-visible absorption and 11B MAS-NMR spectroscopy. Glass molar volume increases while the glass transition temperature decreases with Bi2O3 concentration. Densities of some bismuth borate glasses are found to be greater or very close to those of single crystal phases with equal composition. B11 MAS-NMR studies determined that the fraction of tetrahedrally coordinated borons (N4) is maximum at 42 mol% of Bi2O3 and that there is a local maxima in N4 at Bi2O3 concentration of 50 mol%. Glasses containing Bi2O3 concentration of 33 mol% and higher show an unusual, intense absorption band just below the optical band gap. Two crystalline phases: Bi3B5O12 and Bi4B2O9 were prepared by devitrification of glasses and characterized by X-ray diffraction, FTIR and 11B MAS-NMR studies. Both crystalline phases contained significantly lower N4 than glasses with equal composition.  相似文献   

5.
P. Srinivasa Rao 《Journal of Non》2011,357(21):3585-3591
The variation in physical, structural and electrical properties has been studied as a function of Bi2O3 content in 20ZnF2-(10 + x) Bi2O3-(70-x) P2O5, 0 ≤ x ≤ 10 mol% glasses, which were prepared by melt quenching technique and characterized by differential thermal analysis (DTA). Colorless samples, which have no absorption peaks, are obtained for 10 and 12 mol% of Bi2O3 and the glasses are slowly becoming brownish from 15 to 20 mol% of Bi2O3 which exhibit two absorption peaks at ~ 370 nm, ~ 450 nm correspond to Bi° transitions 4S3/2 → 2P3/2 and 4S3/2 → 2P1/2 respectively. The decrease in 3P1 → 1S0 transition of Bi3+ photo luminescence emission for 18 and 20 mol% of Bi2O3 and increase in optical absorption area shows the reduction of Bi3+ to Bi°. From FTIR studies it is observed that an addition of Bi2O3 decreases the P―O―P covalent bond by forming P―O―Bi bonds due to high polarizing nature of Bi3+ ions. Dielectric parameters like ε', tan δ and a.c. conductivity σac are found to increase and activation energy for a.c. conduction is found to decrease with the increase in the concentration of Bi2O3. Density of defect energy states is found to increase for higher concentration of Bi2O3 and is discussed according to quantum mechanical tunneling (QMT) model.  相似文献   

6.
X-ray diffraction studies of sillenite Bi24V2O40 single crystals grown by the hydrothermal method are performed for a separate crystal and powdered crystals. It is found that the composition of the two specimens is described by the (Bi24 − x x )[Bi y 3+V1−y 5+]2 O40 general formula with completely populated oxygen sites but differs in the content of vacancies at the bismuth site (this was established for the first time) and the Bi: V ratio at the tetrahedral site. The structural models of all the vanadium-containing sillenites reported in the literature are considered, and the possibility that Bi atoms are located at the centers of BiO4 tetrahedra is established.  相似文献   

7.
Tantalum-substituted Bi4Ti3O12 (Bi4Ti3-x/5Tax/5O12, BTTO) thin films were fabricated on Pt(111)/Ti/SiO2/Si(100) substrates by sol–gel technology. The effects of various processing parameters, including Ta content (x=0~0.08) and annealing temperature (500~800 °C), on the growth and properties of thin films were investigated. X-ray diffraction analysis shows that the BTTO thin films have a bismuth-layered perovskite structure with preferred (117) orientation. With the increase of Ta content, the grain size of film decreased slightly, and highly (117)-oriented BTTO films were obtained in the composition of x=0.06. Ta doping on the B-site of Bi4Ti3O12 could induce the distortion of oxygen octahedral and decrease the oxygen vacancy concentration by a compensating effect. The highly (117)-oriented BTTO thin films with x=0.06 exhibits the maximum remanent polarization (2Pr) of 50 μC/cm2 and a low coercive field (2Ec) of 104 kV/cm, fatigue free characteristics up to ≧ 108 switching cycles.  相似文献   

8.
Single crystals of sillenites (Bi12SiO20, Bi12TiO20) doped with chromium in a wide range of concentrations from 1 x 10‐5 up to 1.8 x 10‐2 wt. % were grown by the Czochralski and top‐seed solution growth (TSSG) techniques. To estimate the content and the average charge state of chromium in the grown crystals the chemical analysis by the modified diphenylcarbazide method was applied. The dependencies of the chromium distribution coefficient, the average charge state of Cr cations, and optical absorption on the Cr concentration were found. Both the shift of the absorption edge toward lower frequencies and the appearance of an additional absorption band in the near IR were observed when the chromium concentration in the crystals was increased. The experimental data suggest that chromium has at least two charge states and occupies probably different positions in the sillenite unit cell.  相似文献   

9.
The influence of post-growth short-term low-temperature annealings (O2, 400°C, 5–15 min) on the composition, crystal structure, and superconductivity of Bi2Sr2CaCu2O8 + δ and Bi2Sr2CuO6 + δ oxycuprate whiskers freely grown in gas cavities has been investigated. The optimal conditions for growth in closed gas cavities in a flux and post-growth annealing in oxygen were found, making it possible to obtain high-quality superconducting Bi 2212 and Bi 2201 whiskers in a wide doping range (from heavily underdoped to optimally doped) with a small rocking curve half-width (~0.1°–0.2°) and narrow superconducting transition (ΔT = 1.5–2 K).  相似文献   

10.
Bi4‐xSbxTi3O12 (BSTO) (x = 0, 0.03, 0.04, 0.05, 0.06 and 0.07) thin films have been fabricated on Pt/Ti/SiO2/Si substrates by sol‐gel method. The effects of various Sb3+ content on microstructure and ferroelectric properties of systems are investigated. XRD show that Bi4‐xSbxTi3O12 (x≠0) thin films prefer (117) orientation. The substitution Sb3+ for Bi3+ reduces the grain size of the film surface. Compared to the BTO (x = 0) film, Bi4‐xSbxTi3O12 films display exciting electric properties. Especially when x = 0.04, the film Bi3.96Sb0.04Ti3O12 has achieved the max 2Pr value of 87μC/cm2. This film also has a better anti‐fatigue characteristic, which can be up to 1010 switching cycles without fatigue. The leakage current density improved with J = 8×10−8 A/cm2.  相似文献   

11.
《Journal of Non》2006,352(23-25):2657-2661
Germanate glasses were prepared by the melt-quenching method using an assembled hot-thermocoupler equipped in a sample chamber of a fluorescence spectrometer, and subsequently their luminescence and excitation spectra were measured. In the GeO2 glass, luminescence bands due to the Ge2+ center appeared at the central wavelengths of 300 and 395 nm, their excitation bands being at 250 and 330 nm, respectively. In the (100  x)GeO2  xMmOn glasses, for MmOn = B2O3 (x  50), SiO2 (x  40), and Al2O3 (x  2), the luminescence intensity and therefore the amount of the Ge2+ center increased with increasing the content of MmOn, where M(2n/m)+ ions (B3+, Si4+, and Al3+) have lower basicities than a Ge4+ ion. Contrarily, for MmOn = Li2O (x  30), Na2O (x  20), K2O (x  20), CaO (x  20), SrO (x  3), BaO (x  15), ZnO (x  20), Ga2O3 (x  10), Sb2O3 (x  20), Bi2O3 (15  x  25), TiO2 (x  3), and Nb2O5 (x  10), the luminescence intensity and the amount of the Ge2+ center rapidly decreased with increasing the amount of additives and disappeared, where M(2n/m)+ ions (Li+, Na+, K+, Ca2+, Sr2+, Ba2+, Zn2+, Ga3+, Sb3+, Bi3+, Ti4+, and Nb5+) have higher basicities than a Ge4+ ion.  相似文献   

12.
H. Doweidar 《Journal of Non》2009,355(6):348-354
Studies on xRO · 30Bi2O3 · (70−x)B2O3 glasses have been carried out (0 ? x ? 30 mol%, R = Zn, Ba). Elastic properties and Debye temperature have been investigated using sound velocity measurements at 4 MHz. The ultrasonic parameters along with the IR spectroscopic studies have been employed to explore the role of divalent cations in the structure of the studied glasses. Analysis of infrared spectra indicates that RO is preferentially incorporated into the borate network, forming BO4 units. It is assumed that Bi2O3 enters the structure in the form of BiO6 only. The change of density and molar volume with RO content reveals that BO4 units linked to R2+ cations are denser than those linked to positive sites in the Bi2O3 network. Predicted values of four co-ordinated boron put forward questions about the reliability of assignment of structural units that Bi2O3 may form.  相似文献   

13.
The synthesis of Bi2O3‐Nb2O5 sillenite phase (BNbO) and the solubility of this phase with Bi12TiO20 was investigated by solid‐state reaction synthesis and niobium doped Bi12TiO20 (BTO:Nb) crystals were grown by the Top Seeded Solution Growth (TSSG) technique. The structures of polycrystalline compounds were checked by X‐ray powder diffraction method at room temperature. The correct composition of the sillenite phase stabilized with niobium was determined as Bi12[Nb0.17Bi0.83]O19.7 (BNbO) with unit cell parameter a = 10.261(2) Å. The system BTO‐BNbO is poorly soluble, but niobium doped BTO crystals were grown from the liquid composition 10Bi2O3 : xTiO2 : (1‐x)/2 Nb2O5, with x = 0.95 and 0.90. A niobium concentration limit in the liquid phase is established in order to grow BTO:Nb with good crystalline quality. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The composite structure of the red phase, which accompanies the 2212 and 2201 superconducting phases prepared upon cooling of a melt in the Bi-Sr-Ca-Cu-O system, is revealed by scanning electron microscopy and X-ray diffraction analysis. The matrix component in two crystals I and II under investigation has a monoclinic structure with space group C2/m and the unit cell parameters a = 21.832(2) and 21.8142(9) Å, b = 4.3809(4) and 4.3771(2) Å, c = 12.9430(12) and 12.9378(6) Å, β = 102.832(2)° and 102.839(1)°, and V = 1207.0(2) and 1204.45(9) Å3, respectively. The composition is described by the general formula Bi4(Ca2?x Sr1.5+x )O9.5 with x = 0.13(2) for crystal I and x = 0.19(2) for crystal II. The matrix contains intergrowing clusters of the composition Cu2O. It is demonstrated that the presence of the second component is structurally justified by the commensurability of the systems of body-centered subcells of cations in the host matrix and anion sublattices in the structure of the Cu2O oxide.  相似文献   

15.
The ionic conductivity of nonstoichiometric Bi12(V0.89Bi0.03)O20.27 single crystal with a sillenite-type structure has been investigated by impedance spectroscopy; its conductivity at 673 K is 2 × 10?3 S/cm, which is about two orders of magnitude higher than the conductivity of oxide superionic conductor single crystal Zr0.88Y0.12O1.94. As follows from crystallochemical analysis, ion transport in Bi12(V0.89Bi0.03)O20.27 is due to additional O2? ions, which arise due to oxygen nonstoichiometry.  相似文献   

16.
Raman and luminescence spectroscopy were used to determine the structure of alkali borate tungstate glasses: M2O(B2O3)2·xWO3, M = Li or Na (0 < x < 1). Raman scattering results showed the dominant tungstate species in these photochromic glasses to be tetrahedral WO4=. At high concentrations of WO3, WO3·H2O, and W2O7= are also present. Luminescence measurements provided evidence for an octahedral WO3 structure not identified by the Raman results. The results also revealed a possible change in the structure of the glasses similar to that observed in alkali borate glasses and associated with the “borate anomaly”. In addition, preliminary measurements are reported on the variation of the band gap, density, index of refraction, and the elastic coefficient C11 determined by Brillouin scattering with composition.  相似文献   

17.
The nonlinear optical (NLO) properties of Bi2O2(OH)(NO3) crystals have been reported for the first time. Bi2O2(OH)(NO3) crystals with dimensions of 1.3×1.2×0.1 mm3 have been grown by hydrothermal method, and the crystals characterized by X‐ray powder diffraction (XRD), SEM and IR. The measured second harmonic generation (SHG) effect of Bi2O2(OH)(NO3) was about 7 times that of KDP. The mechanism responsible for the large SHG of Bi2O2(OH)(NO3) was explained according to its structure. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
《Journal of Non》2006,352(50-51):5403-5407
The electrical, thermal, optical, and morphological properties of CUO doped Bi2O3–B2O3–BaO–ZnO glasses were studied as a PbO-free, low firing transparent dielectric layer for plasma display panels (PDP). CuO improved the transmittance of Bi2O3–B2O3–BaO–ZnO by up to 84% in the visible region, eliminating a yellowish color typical of Bi2O3–B2O3–BaO–ZnO. A slight absorption within the near infrared (NIR) region was also observed. The glass transition temperature (Tg), thermal coefficient of expansion (TCE), and root-mean square (rms) roughness of 0.005 wt% CuO doped Bi2O3–B2O3–BaO–ZnO were found to be 455 °C, 81.4 × 10−7/K, respectively, and 162 ± 14 Å, which satisfied the requirements for a transparent dielectric layer for PDP application.  相似文献   

19.
SiO2–PbO–Bi2O3 glasses having the composition of 35SiO2xPbO–(65 ? x)Bi2O3 (where x = 5, 20 and 45; in mol%) have been prepared using the conventional melting and annealing method. Differential scanning calorimetry (DSC) was employed to characterize the thermal behavior of the prepared glasses in order to determine their crystallization temperatures (Tcr). It has been found that Tcr decreases with the decrease of Bi2O3 content. The amorphous nature of the prepared glasses as well as the crystallinity of the produced glass–ceramics were confirmed by X-ray powder diffraction (XRD) analysis. SiPbBi2O6 glass nano-composites, comprising bismuth oxides nano-crystallites, were obtained by controlled heat-treatment of the glasses at their (Tcr) for 10 h. Transmission electron microscopy (TEM) of the glass nano-crystal composites demonstrates the presence of cubic Bi2O3 nano-crystallites in the SiPbBi2O6 glass matrix. Nano-crystallites mean size has been determined from XRD line width analysis using Scherrer's equation as well as from TEM; and the sizes obtained from both analyses are in good agreement. These sizes varied from about 15 to 170 nm depending on the chemical compositions of parent glasses and, consequently, their structure. Interestingly, replacement of the Bi2O3 by PbO in the glass compositions has pronounced effect on the nature, morphology and size of the formed nano-crystallites. Decrease of the Bi2O3 content increases the size of the nano-crystallites, and at the lowest Bi2O3 extreme, namely 20 mol%, introduces minority of the monoclinic Bi2O4 in addition to the cubic Bi2O3. The crystallization mechanism is suggested to involve a diffusion controlled growth of the bismuth oxide nano-crystallites in the SiPbBi2O6 glass matrix with the zero nucleation rate.  相似文献   

20.
An original technique of computer modeling of substitutional solid solutions has been applied to Al2O3-Cr2O3, Al2O3-Fe2O3, and Fe2O3-Cr2O3 binary systems. The parameters of semiempirical interatomic potentials were optimized using the experimentally studied structural, elastic, and thermodynamic properties of pure components. Among point defects, the most energetically favorable ones for all three oxides are Schottky vacancy quintets. To model (M x 1 M 1 ? x 2 )2O3 solid solutions, 4 × 4 × 1 disordered supercells with M 1: M 2 cation ratios of 1: 5, 1: 2, 1: 1, 2: 1, and 5: 1 have been constructed in the cation sublattice containing 192 atoms. The mixing enthalpy and volume, interaction parameters, bulk moduli, and vibrational entropy were found by minimizing the interatomic interaction energy in supercells with the symmetry P1. Calculations of the Gibbs energy made it possible to estimate the fields of stability of the Al2O3-Cr2O3 and Al2O3-Fe2O3 solid solutions; these estimates were compared with the experimental data. Histograms of M-M, M-O, and O-O interatomic distances were constructed and the local structure was analyzed for the Al1.0Cr1.0O3, Al1.0Fe1.0O3, and Fe1.0Cr1.0O3 compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号