首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Revenue management is the process of understanding, anticipating and influencing consumer behavior in order to maximize revenue. Network revenue management models attempt to maximize revenue when customers buy bundles of multiple resources. The dependence among the resources in such cases is created by customer demand. Network revenue management can be formulated as a stochastic dynamic programming problem whose exact solution is computationally intractable. Solutions are based on approximations of various types. Customer choice behavior modeling has been gaining increasing attention in the revenue management. A framework for solving network revenue management problems with customer choice behavior is proposed. The modeling and solving framework is composed from three inter-related network structures: basic network model, Petri net, and neural net.  相似文献   

2.
The admission decision is one of the fundamental categories of demand-management decisions. In the dynamic model of the single-resource capacity control problem, the distribution of demand does not explicitly depend on external conditions. However, in reality, demand may depend on the current external environment which represents the prevailing economic, financial, social or other factors that affect customer behavior. We formulate a Markov Decision Process (MDP) to maximize expected revenues over a finite horizon that explicitly models the current environment. We derive some structural results of the optimal admission policy, including the existence of an environment-dependent thresholds and a comparison of threshold levels in different environments. We also present some computational results which illustrate these structural properties. Finally, we extend some of the results to a related dynamic pricing formulation.  相似文献   

3.
In this note, the fallacy in the method given by Sharma and Swarup, in their paper on time minimising transportation problem, to determine the setS hkof all nonbasic cells which when introduced into the basis, either would eliminate a given basic cell (h, k) from the basis or reduce the amountx hkis pointed out.  相似文献   

4.
5.
We prove an asymptotic revenue equivalence among weakly asymmetric auctions with interdependent values, in which bidders have either asymmetric utility functions or asymmetric distributions of signals.  相似文献   

6.
Many perishable products and services have multiple capacity attributes. Shipping capacity of container liners, for example, is measured by both volume and weight. Containers with different size consume various capacities in the two dimensions. Restaurant revenue management aims to maximize the revenue per available seat-hour that captures both the number of dining tables and service manpower. Similar issues arise in the air cargo, trucking and health care industries.  相似文献   

7.
In many service industries, firms offer a portfolio of similar products based on different types of resources. Mismatches between demand and capacity can therefore often be managed by using product upgrades. Clearly, it is desirable to consider this possibility in the revenue management systems that are used to decide on the acceptance of requests. To incorporate upgrades, we build upon different dynamic programming formulations from the literature and gain several new structural insights that facilitate the control process under certain conditions. We then propose two dynamic programming decomposition approaches that extend the traditional decomposition for capacity control by simultaneously considering upgrades as well as capacity control decisions. While the first approach is specifically suited for the multi-day capacity control problem faced, for example, by hotels and car rental companies, the second one is more general and can be applied in arbitrary network revenue management settings that allow upgrading. Both approaches are formally derived and analytically related to each other. It is shown that they give tighter upper bounds on the optimal solution of the original dynamic program than the well-known deterministic linear program. Using data from a major car rental company, we perform computational experiments that show that the proposed approaches are tractable for real-world problem sizes and outperform those disaggregated, successive planning approaches that are used in revenue management practice today.  相似文献   

8.
Recent extreme economic developments nearing a worst-case scenario motivate further examination of minimax linear programming approaches for portfolio optimization. Risk measured as the worst-case return is employed and a portfolio from maximizing returns subject to a risk threshold is constructed. Minimax model properties are developed and parametric analysis of the risk threshold connects this model to expected value along a continuum, revealing an efficient frontier segmenting investors by risk preference. Divergence of minimax model results from expected value is quantified and a set of possible prior distributions expressing a degree of Knightian uncertainty corresponding to risk preference determined. The minimax model will maximize return with respect to one of these prior distributions providing valuable insight regarding an investor’s risk attitude and decision behavior. Linear programming models for financial firms to assist individual investors to hedge against losses by buying insurance and a model for designing variable annuities are proposed.  相似文献   

9.
Mathematical programming models for airline seat inventory control provide booking limits and bid-prices for all itineraries and fare classes. E.L. Williamson [Airline network seat inventory control: methodologies and revenue impacts, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 1992] finds that simple deterministic approximation methods based on average demand often outperform more advanced probabilistic heuristics. We argue that this phenomenon is due to a booking process that includes nesting of the fare classes, which is ignored in the modeling phase. The differences in the performance between these approximations are studied using a stochastic programming model that includes the deterministic model as a special case. Our study carefully examines the trade-off between computation time and the aggregation level of demand uncertainty with examples of a multi-leg flight and a single-hub network.  相似文献   

10.
We study some mathematical programming formulations for the origin-destination model in airline revenue management. In particular, we focus on the traditional probabilistic model proposed in the literature. The approach we study consists of solving a sequence of two-stage stochastic programs with simple recourse, which can be viewed as an approximation to a multi-stage stochastic programming formulation to the seat allocation problem. Our theoretical results show that the proposed approximation is robust, in the sense that solving more successive two-stage programs can never worsen the expected revenue obtained with the corresponding allocation policy. Although intuitive, such a property is known not to hold for the traditional deterministic linear programming model found in the literature. We also show that this property does not hold for some bid-price policies. In addition, we propose a heuristic method to choose the re-solving points, rather than re-solving at equally-spaced times as customary. Numerical results are presented to illustrate the effectiveness of the proposed approach.  相似文献   

11.
One of the latest developments in network revenue management (RM) is the incorporation of customer purchase behavior via discrete choice models. Many authors presented control policies for the booking process that are expressed in terms of which combination of products to offer at a given point in time and given resource inventories. However, in many implemented RM systems—most notably in the hotel industry—bid price control is being used, and this entails the problem that the recommended combination of products as identified by these policies might not be representable through bid price control. If demand were independent from available product alternatives, an optimal choice of bid prices is to use the marginal value of capacity for each resource in the network. But under dependent demand, this is not necessarily the case. In fact, it seems that these bid prices are typically not restrictive enough and result in buy-down effects.We propose (1) a simple and fast heuristic that iteratively improves on an initial guess for the bid price vector; this first guess could be, for example, dynamic estimates of the marginal value of capacity. Moreover, (2) we demonstrate that using these dynamic marginal capacity values directly as bid prices can lead to significant revenue loss as compared to using our heuristic to improve them. Finally, (3) we investigate numerically how much revenue performance is lost due to the confinement to product combinations that can be represented by a bid price.The heuristic is not restricted to a particular choice model and can be combined with any method that provides us with estimates of the marginal values of capacity. In our numerical experiments, we test the heuristic on some popular networks examples taken from peer literature. We use a multinomial logit choice model which allows customers from different segments to have products in common that they consider to purchase. In most problem instances, our heuristic policy results in significant revenue gains over some currently available alternatives at low computational cost.  相似文献   

12.
We study here a rather general class of nonlinear control systems with uncertain dynamics involving perturbating variables, without assuming any statistical information on them. Contrary to majority of publications on uncertain control problems, we study here the value function and seek for optimal (-optimal) control policies. Our four theorems, covering all possible situations that may happen in the context of relationships between the influence of the control parameters on the system versus the perturbating parameters, give both upper and lower bounds for the value function in terms of solutions of simplified unperturbed control problems. They also provide constructive procedures for finding strategies that, under additional assumptions, appear to be -optimal control policies in the class of so-called step guided strategies introduced by us in a very recent paper.  相似文献   

13.
We study a single-resource multi-class revenue management problem where the resource consumption for each class is random and only revealed at departure. The model is motivated by cargo revenue management problems in the airline and other shipping industries. We study how random resource consumption distribution affects the optimal expected profit and identify a preference acceptance order on classes. For a special case where the resource consumption for each class follows the same distribution, we fully characterize the optimal control policy. We then propose two easily computable heuristics: (i) a class-independent heuristic through parameter scaling, and (ii) a decomposition heuristic that decomposes the dynamic programming formulation into a collection of one-dimensional problems. We conduct extensive numerical experiments to investigate the performance of the two heuristics and compared them with several widely studied heuristic policies. Our results show that both heuristics work very well, with class-independent heuristic slightly better between the two. In particular, they consistently outperform heuristics that ignore demand and/or resource consumption uncertainty. Our results demonstrate the importance of considering random resource consumption as another problem dimension in revenue management applications.  相似文献   

14.
Network revenue management is concerned with managing demand for products that require inventory from one or several resources by controlling product availability and/or prices in order to maximize expected revenues subject to the available resource capacities. One can tackle this problem by decomposing it into resource-level subproblems that can be solved efficiently, for example by dynamic programming. We propose a new dynamic fare proration method specifically having large-scale applications in mind. It decomposes the network problem by fare proration and solves the resource-level dynamic programs simultaneously using simple, endogenously obtained dynamic marginal capacity value estimates to update fare prorations over time. An extensive numerical simulation study demonstrates that the method results in tightened upper bounds on the optimal expected revenue, and that the obtained policies are very effective with regard to achieved revenues and required runtime.  相似文献   

15.
An airline has to decide whether to accept an incoming customer request for a seat in the airplane or to reject it in hope that another customer will request the seat later at a higher price. Capacity control, as one of the instruments of revenue management, gives a solution to this decision problem. In the presence of strategic alliances capacity control changes. For the case of two airlines in the alliance and a single flight leg we propose an option-based capacity control process. The determination of booking limits for capacity control is done with real options. A simulation model is introduced to evaluate the booking process of the partner airlines within the strategic alliance, considering the option-based procedure. In an iterative process the booking limits are improved with simulation-based optimization. The results of the option-based procedure will be compared with the results of the simulation-based optimization, the results of a first-come-first-served (FCFS) approach and ex post optimal solutions.  相似文献   

16.
We study a network airline revenue management problem with discrete customer choice behavior. We discuss a choice model based on the concept of preference orders, in which customers can be grouped according to a list of options in decreasing order of preference. If a customer’s preferred option is not available, the customer moves to the next choice on the list with some probability. If that option is not available, the customer moves to the third choice on the list with some probability, and so forth until either the customer has no other choice but to leave or his/her request is accepted. Using this choice model as an input, we propose some mathematical programs to determine seat allocations. We also propose a post-optimization heuristic to refine the allocation suggested by the optimization model. Simulation results are presented to illustrate the effectiveness of our method, including comparisons with other models.  相似文献   

17.
The rental fleet scheduling problem (RFSP) arises in vehicle-rental operations that offer a wide variety of vehicle types to customers, and allow a rented vehicle to ‘migrate’ to a setdown depot other than the pickup depot.When there is a shortage of vehicles of a particular type at a depot, vehicles may be relocated to that depot, or vehicles of similar types may be substituted.The RFSP involves assigning vehicles to rentals so as to minimise the costs of these operations, and arises in both static and online contexts. The authors have adapted a well-known assignment algorithm for application in the online context. In addition, a network-flow algorithm with more comprehensive coverage of problem conditions is used to investigate the determination of rental pricing using revenue management principles. The paper concludes with an outline of the algorithms’ use in supporting the operations of a large recreational vehicle rental company.  相似文献   

18.
We develop an approximate dynamic programming approach to network revenue management models with customer choice that approximates the value function of the Markov decision process with a non-linear function which is separable across resource inventory levels. This approximation can exhibit significantly improved accuracy compared to currently available methods. It further allows for arbitrary aggregation of inventory units and thereby reduction of computational workload, yields upper bounds on the optimal expected revenue that are provably at least as tight as those obtained from previous approaches. Computational experiments for the multinomial logit choice model with distinct consideration sets show that policies derived from our approach can outperform some recently proposed alternatives, and we demonstrate how aggregation can be used to balance solution quality and runtime.  相似文献   

19.
For any β>1,let([0,1],Tβ) be the beta dynamical system.For a positive function ψ:N→R+ and a real number x0 ∈[0,1],we define D(Tβ,ψ,x0) the set of ψ-well approximable points by x0as {x∈[0,1]:|Tβnx-x0|<ψ(n) for infinitely many n∈N}.In this note,by proving a structure lemma that any ball B(x,r) contains a regular cylinder of comparable length with r,we determine the Hausdorff dimension of the set D(Tβ,ψ,x0) completely for any β>1 and any positive function ψ.  相似文献   

20.
We consider the problem of optimally allocating the seats on a single flight leg to the demands from multiple fare classes that arrive sequentially. It is well-known that the optimal policy for this problem is characterized by a set of protection levels. In this paper, we develop a new stochastic approximation method to compute the optimal protection levels under the assumption that the demand distributions are not known and we only have access to the samples from the demand distributions. The novel aspect of our method is that it works with the nonsmooth version of the problem where the capacity can only be allocated in integer quantities. We show that the sequence of protection levels generated by our method converges to a set of optimal protection levels with probability one. We discuss applications to the case where the demand information is censored by the seat availability. Computational experiments indicate that our method is especially advantageous when the total expected demand exceeds the capacity by a significant margin and we do not have good a priori estimates of the optimal protection levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号