首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Hall effect measurements have been performed for the first time on n-type GaS single crystals, grown buy the Bridgam-Stockbarger method. Electrical properties are dominated by a donor centre at 0.52 eV, with a concentration of 2.3 × 1016cm–3. The conduction band density-of-states effective mass has been estimated to be 1.3me.The low temperature conduction is compatible with a hopping process with an activation energy of 0.15 eV.  相似文献   

2.
ESR, resistivity and Seeback coefficient measurements have been performed on both ceramics and single crystals of reduced semiconducting BaTiO3.From the results that the observed temperature dependence of the Seeback coefficient can be explained by the temperature dependence of carrier concentration estimated from the electric resistivity making use of the data of electron mobility, it is concluded that the electric conduction in reduced BaTiO3 is due to the band conduction rather than to the hopping process. From the measurement of the temperature dependence of the ESR intensity of the F-center, the number of electrons trapped at the F-centers decreases exponentially with temperature, while the number of conduction electrons increases. This temperature dependence can not be simply explained as that of the unionized donors in semiconductor. Therefore, the ESR signal considered as that of the F-center may not be due to simple donors, even though some of the conduction electrons may be originated in them.  相似文献   

3.
Optical absorption at room temperature and electrical conductivity at temperatures between 283 and 333 K of vacuum evaporated GexFexSe100−2x (0≤x≤15) amorphous thin films have been studied as a function of composition and film thickness. It was found that the optical absorption is due to indirect transition and the energy gap increases with increasing both Ge and Fe content; on the other hand, the width of the band tail exhibits the opposite behavior. The optical band gap Eopt was found to be almost thickness independent. The electrical conductivity show two types of conduction, at higher temperature the conduction is due to extended states, while the conduction at low temperature is due to variable range hopping in the localized states near Fermi level. Increasing Ge and Fe contents were found to decrease the localized state density N(EF), electrical conductivity and increase the activation energy for conduction, which is nearly thickness independent. Variation of the atomic densities ρ, molar volume V, glass transition temperature Tg cohesive energy C.E and number of constraints NCo with average coordination number Z was investigated. The relationship between the optical gap and chemical composition is discussed in terms of the cohesive energy C.E, average heat of atomization and coordination numbers.  相似文献   

4.
Faraday effect, absorption coefficient and Hall effect have been examined in Cr doped PbTe single crystals. The effective masses of carriers mF and then values of effective masses at the bottom of conductivity band mF(0) have been calculated. It is shown that mF in Cr doped PbTe is comparable with mF in n-type PbTe not doped with chromium, with the same free carrier concentration, and the relative temperature variation of mF(0) corresponds to relative variation of Eg. In the absorption spectrum the additional absorption maximum is found at the energy 0.11–0.14 eV. The long-wave side of the peak is shifted towards longer waves as the temperature is increased. Calculation shows that chromium level is located in the conduction band at ΔE = 0.11 eV in the limit T → 0, and is shifted down towards the bottom of the conduction band with a constant rate of 0.8 × 10?4eVK within the temperature range of 4.4–300 K and 3.3 × 10?4eVK within the temperature range 300–800 K.  相似文献   

5.
Data obtained in the study of the behavior with temperature of the electrical resistance of thin polycrystalline SmS films (thickness ~0.5–0.8 μm) performed in the temperature region 4.2–440 K have been used to correct the band structure model of this material. It has been shown that the main impurity levels in thin polycrystalline SmS films are levels corresponding to localized states close to the conduction band bottom, as well as the impurity donor levels E i which belong to Sm ions filling vacancies in the S sublattice. The tail of localized states has been found to extend up to the energy of impurity donor levels.  相似文献   

6.
The electrical transport properties and dielectric relaxation of Au/zinc phthalocyanine, ZnPC/Au devices have been investigated. The DC thermal activation energy at temperature region 400-500 K is 0.78 eV. The dominant conduction mechanisms in the device are ohmic conduction below 1 V and space charge limited conduction dominated by exponential trap distribution in potentials >1 V. Some parameters, such as concentration of thermally generated holes in valence band, the trap concentration per unit energy range at the valence band edge, the total concentration of traps and the temperature parameter characterizing the exponential trap distribution and their relation with temperatures have been determined. The AC electrical conductivity, σac, as a function of temperature and frequency has been investigated. It showed a frequency and temperature dependence of AC conductivity for films in the temperature range 300-400 K. The films conductivity in the temperature range 400-435 K increased with increasing temperature and it shows no response for frequency change. The dominant conduction mechanism is the correlated barrier hopping. The temperature and frequency dependence of real and imaginary dielectric constants and loss tangent were investigated.  相似文献   

7.
The superconductor/ferromagnet proximity effect in the Pb/Co2Cr1–xFe x Al bilayer systems has been studied. Thin films of the Heusler alloy Co2Cr1–xFe x Al have been prepared at different substrate temperatures. It has been established using Andreev spectroscopy of point contacts that the degree of spin polarization of conduction electrons in the Heusler alloy is on the order of 30 and 70% for the films prepared at a substrate temperature of 300 and 600 K, respectively. It has been found that the dependence of the superconducting transition temperature on the thickness of the Pb layer at a fixed thickness of the Heusler layer is determined by the degree of spin polarization of the conduction band in the ferromagnetic layer.  相似文献   

8.
Ashok K Saxena  B B Singh 《Pramana》1983,21(2):123-129
The Hall mobility, electron concentration and resistivity have been measured as a function of alloy composition for Ga1?x Al x As alloys at 300 K. The data have been explained on the multiconduction band structure of the alloys. The alloy composition for the direct-indirect conduction band minima cross-over, the electron mobility in theX minima and the activation energy of the deep level below these minima have been determined.  相似文献   

9.
First-principles calculations, by means of the full-potential augmented plane wave method using the LSDA+U approach (local spin density approximation with Hubbard-U corrections), have been carried out for the electronic structure of the Al0.75Er0.25N. The LSDA+U method is applied to the rare-earth 4? states. We have investigated the electronic and magnetic properties.The Al0.75Er0.25N is shown to be a semiconductor, where the filled ? states are located in the valence bands and the empty ones above the conduction band edge. The magnetic interaction of the rare-earth ion with the host states at the valence and conduction band edges has been investigated and discussed.  相似文献   

10.
Using the first-principles full-potential linear muffin-tin orbital method within the local density approximation, we have studied the structural, elastic, thermodynamic, and electronic properties of the ideal-cubic perovskite BiGaO3. It is found that this compound has an indirect band gap. The valence band maximum (VBM) is located at Γ-point, whereas the conduction band minimum (CBM) is located at X-point. The pressure and volume dependences of the energy band gaps have been calculated. The elastic constants at equilibrium are also determined. We derived the bulk and shear moduli, Young’s modulus, and Poisson’s ratio. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of the bulk modulus, heat capacities, and Debye temperature with pressure and temperature are successfully obtained.  相似文献   

11.
In general, the conductivity in chalcogenide glasses at higher temperatures is dominated by band conduction (DC conduction). But, at lower temperatures, hopping conduction dominates over band conduction. A study at lower temperature can, eventually, provide useful information about the conduction mechanism and the defect states in the material. Therefore, the study of electrical properties of GexSe100-x in the lower temperature region (room temperature) is interesting. Temperature and frequency dependence of GexSe100-x (x = 15, 20 and 25) have been studied over different range of temperatures and frequencies. An agreement between experimental and theoretical results suggested that the behaviour of germanium selenium system (GexSe100-x ) have been successfully explained by correlated barrier hopping (CBH) model.  相似文献   

12.
N M GASANLY 《Pramana》2016,86(6):1383-1390
Photoluminescence (PL) spectra of CuIn5S8 single crystals grown by Bridgman method have been studied in the wavelength region of 720–1020 nm and in the temperature range of 10–34 K. A broad PL band centred at 861 nm (1.44 eV) was observed at T = 10 K. Variations of emission band has been studied as a function of excitation laser intensity in the 0.5– 60.2 mW cm?2 range. Radiative transitions from shallow donor level located at 17 meV below the bottom of the conduction band to the acceptor level located at 193 meV above the top of the valence band were suggested to be responsible for the observed PL band. An energy level diagram showing transitions in the band gap of the crystal has been presented.  相似文献   

13.
We consider a linear strand of chemically equivalent molecules of spin S = 1 which are free to rotate about their centres of mass fixed to a rigid lattice. The molecules interact via nearest-neighbour quadrupolar interactions and the electrons, occupying a half-filled, tight-binding conduction band, hop between nearest-neighbour molecules only. With a mean-field theory, we study the dependence of the metal-insulator phase transition temperature Tc on the quadrupole-quadrupole interaction, the electron-quadrupole interaction as well as the bandwidth of the conduction band.  相似文献   

14.
The skutterudites are an excellent candidate for thermoelectric materials used in mechanic free heat pump and electric generator. Using the ab initio density functional theory we have calculated the electronic band structure and thermoelectric properties of skutterudite RuSb2Te. RuSb2Te compound belongs to an indirect band gap semiconductor. The density of states has a sharp upturn at the conduction band edge and is very low at the valence band top. This feature suggests that Seebeck coefficient is larger for n doped than for p doped RuSb2Te compound. The calculated Seebeck coefficient confirms this trend. It is in a qualitative agreement with the experiments if the temperature is not too high.  相似文献   

15.
The nonoscillating singular part of the susceptibility of Pb1?xSnxTe alloys is calculated. The dependence on the composition x, temperature and the carrier concetration is explained by the existence of the valence band, separated from the conduction band with a small energy gap.  相似文献   

16.
This work assesses theoretically the potential of dilute nitride alloys of InNxSb1−x for long-wavelength IR applications. A 10-band k.p approximation modified to account for conduction/valence band coupling is implemented to extract the bandgap as a function of the nitrogen concentration in the alloy and the temperature. The calculations show the possibility to obtain a band closure at ∼2% of nitrogen for InSbN at 300 K. The absorption coefficient, and its temperature dependence, is then determined using an Elliot-like formalism, predicting stronger absorption properties associated with the enhancement of conduction band effective masses. This enhancement yields over an order of magnitude increase in the non-radiative Auger recombination lifetimes suggesting the potential of InNSb for significantly enhancing detectivity limits and operation temperatures of long-wavelength IR detectors.  相似文献   

17.
Hydrostatic pressure measurements of Hall coefficient and resistivity in n-GaSb(Te) have been carried out over the temperature range 1.4 K–300 K. The results give direct evidence for impurity conduction related to the Te donor states associated with the L conduction band minima.  相似文献   

18.
The processes of the excitation energy transfer to the emission centers have been investigated for calcium tungstate crystals taking into account features of the electronic structure of valence band and conduction band. The calculations of the electronic structure of host lattice CaWO4 were performed in the framework of density functional theory. The underestimation of the bandgap value in the calculations has been corrected according to the experimental data. Luminescence of two samples grown using Czochralski (cz) and hydrothermal (ht) techniques were studied. Intrinsic emission band related to excitons, self-trapped on WO4 complexes has been observed for the both samples while the additional low-energy emission band related to the defects of crystal structure has been observed only for (ht) sample indicating the enhanced concentration of the defects in the sample. It was shown that the features of the conduction band electronic structure are reproduced in the excitation spectrum of intrinsic luminescence only for the (ht) sample while for (cz) sample the correlation is absent. The enhanced role of the competitive channels in the process of excitation energy transfer to intrinsic emission centers in (ht) sample is responsible for the observed difference.  相似文献   

19.
Lattice constant, Curie temperature, and electrical conductivity of CdCr2Se4:In single crystals have been measured after heat treatments of the crystals in Se atmosphere and under streaming hydrogen. By these treatments, the concentration of the Se vacancies and of the charge carrier concentration is altered drastically. The lattice constant as well as the magnetic ordering temperature have been found not to be affected by these heat treatments.Since the Se vacancies act as doubly changed donors, the electrical conductivity is strongly dependent on the concentration of the Se vacancies. A resistivity anomaly and large magnetoresistance are observed only in crystals with considerable Se deficiency. From these results it is concluded that the magnetoresistance is caused by hopping conduction between donor sites partly emptied by compensating A-site vacancy acceptors. Large magnetoresistance is found in samples with considerable Se deficit because only in this case the conduction at lower temperatures is dominated by the impurity band.  相似文献   

20.
This paper reports on an EPR study of a ferroelectric, 1.8/65/35, and an antiferroelectric, 2/95/5, of optically transparent Pb1?y LayZr1?x TixO3 (PLZT) ceramics within a broad temperature range (20–300 K) after illumination at a wavelength of 365–725 nm. Illumination with ultraviolet light, whose photon energy corresponds to the band gap of these materials, at T<50 K creates a number of photoinduced centers: Ti3+, Pb+, and Pb3+. It is shown that these centers are generated near a lanthanum impurity, which substitutes for both the Pb2+ and, partially, Ti4+ ions through carrier trapping from the conduction or valence band into lattice sites. The temperature ranges of the stability of these centers are measured, and the position of their local energy levels in the band gap is determined. The most shallow center is Ti3+, with its energy level lying 47 meV below the conduction band bottom. The Pb3+ and Pb+ centers produce deeper local levels and remain stable in the 2/95/5 PLZT ceramics up to room temperature. The migration of localized carriers is studied for both ceramic compositions. It is demonstrated that, under exposure to increased temperature or red light, the electrons ionized into the conduction band from Ti3+ are retrapped by the deeper Pb+ centers, thus hampering the carrier drift in the band and the onset of photoconduction. The part played by localized charges in the electrooptic phenomena occurring in the PLZT ceramics is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号