首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of eight bifunctional diketopiperazine (DKP) scaffolds is described; these were formally derived from 2,3-diaminopropionic acid and aspartic acid (DKP-1-DKP-7) or glutamic acid (DKP-8) and feature an amine and a carboxylic acid functional group. The scaffolds differ in the configuration at the two stereocenters and the substitution at the diketopiperazinic nitrogen atoms. The bifunctional diketopiperazines were introduced into eight cyclic peptidomimetics containing the Arg-Gly-Asp (RGD) sequence. The resulting RGD peptidomimetics were screened for their ability to inhibit biotinylated vitronectin binding to the purified integrins α(v)β(3) and α(v)β(5), which are involved in tumor angiogenesis. Nanomolar IC(50) values were obtained for the RGD peptidomimetics derived from trans DKP scaffolds (DKP-2-DKP-8). Conformational studies of the cyclic RGD peptidomimetics by (1)H?NMR spectroscopy experiments (VT-NMR and NOESY spectroscopy) in aqueous solution and Monte Carlo/Stochastic Dynamics (MC/SD) simulations revealed that the highest affinity ligands display well-defined preferred conformations featuring intramolecular hydrogen-bonded turn motifs and an extended arrangement of the RGD sequence [Cβ(Arg)-Cβ(Asp) average distance ≥8.8??]. Docking studies were performed, starting from the representative conformations obtained from the MC/SD simulations and taking as a reference model the crystal structure of the extracellular segment of integrin α(v)β(3) complexed with the cyclic pentapeptide, Cilengitide. The highest affinity ligands produced top-ranked poses conserving all the important interactions of the X-ray complex.  相似文献   

2.
3.
An improved scale-up synthesis was required for the alpha(V)beta(3)/alpha(V)beta(5) integrin antagonist 1, which had demonstrated oral efficacy in eye disease models of angiogenesis and vascular permeability. A stereodefined, quinoline-substituted, unsaturated ester was conveniently prepared by a Suzuki-Miyaura coupling to facilitate exploration of multiple methods of asymmetric reduction. The catalytic chiral hydrogenation of the corresponding unsaturated acid (Z-5b) with a ruthenium-based metal precursor and the (R)-XylPhanePhos ligand proved particularly efficient and economical. The resulting (3S)-quinoline-containing intermediate was reduced to an equal mixture of tetrahydroquinoline diastereomers. The undesired diastereomer could be recycled to the desired one by an oxidation/reduction protocol. The absolute stereochemistry of 1 was established as 3S,3'S by a combination of X-ray diffraction and chemical means.  相似文献   

4.
The preparation of 3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propan-1-amine 2a and 3-[(7R)-7-methyl-5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl]propan-1-amine 2b, key intermediates in the synthesis of alpha(V)beta(3) antagonists, is described. The syntheses rely on the efficient double Sonogashira reactions of 2,5-dibromopyridine 3 with acetylenic alcohols 4a/4b and protected propargylamines 10a-e followed by Chichibabin cyclizations of 3,3'-pyridine-2,5-diyldipropan-1-amines 9a/9b.  相似文献   

5.
The search for general strategies for inhibiting protein-protein interactions has been stimulated by recognition of the key role they play in virtually every process of living systems. Multiprotein complex assembly and localization by PDZ domain-containing proteins exemplify processes critical to cell physiology and function that are mediated by beta strand association. Here we describe the development of substituted "@-tides," protease-resistant peptidomimetics incorporating conformationally restricted amino acid surrogates that reproduce the hydrogen-bonding pattern and side-chain functionality of a beta strand. The synthetic flexibility and generality of the substituted @-tide design was demonstrated by the synthesis of a panel of ligands for the alpha1-syntrophin PDZ domain. The rational design of a small molecule of unprecedented affinity for the PDZ domain suggests that these peptidomimetics may provide a general method for inhibiting protein-protein interactions involving extended peptide chains.  相似文献   

6.
Results obtained over the past decade towards the preparation of multitopic carbohydrate architectures combining the molecular inclusion capabilities of cyclomaltooligosaccharide receptors (cyclodextrins, CDs) and the recognition properties of saccharide ligands towards biological receptors are discussed. The potential of these new sugar-based "intelligent" transporters for site specific delivery of therapeutics is outlined.  相似文献   

7.
Small molecules capable of stabilizing the G-quadruplex (G4) structure are of interest for the development of improved anticancer drugs. Novel 4,7-diamino-substituted 1,10-phenanthroline-2,9-dicarboxamides that represent hybrid structures of known phenanthroline-based ligands have been designed. An efficient synthetic route to the compounds has been developed and their interactions with various G4 sequences have been evaluated by F?rster resonance energy transfer (FRET) melting assays, fluorescent intercalator displacement (FID), electrospray ionization mass spectrometry (ESI-MS), and circular dichroism (CD) spectroscopy. The preferred compounds have high aqueous solubility and are strong and potent G4 binders with a high selectivity over duplex DNA; thus, they represent a significant improvement over the lead compounds. Two of the compounds are inhibitors of HeLa and HT1080 cell proliferation.  相似文献   

8.
Mannose-binding proteins on the surface of antigen-presenting cells (APCs) are capable of recognizing and internalizing foreign agents in the early stages of immune response. These receptors offer a potential target for synthetic vaccines, especially vaccines designed to stimulate T cells. We set out to synthesize a series of fluorescein-labelled O-mannosylated peptides using manual solid phase peptide synthesis (SPPS) on pre-loaded Wang resin, in order to test their ability to bind mannose receptors on human APCs in vitro. A flexible and reliable method for the synthesis of fluorescein-labelled O-mannosylated glycopeptides was desired in order to study their lectin-binding properties using flow cell cytometry. Two synthetic strategies were investigated: incorporation of a fluorescein label into the peptide chain via a lysine side chain epsilon-amino group at the final stage of standard Fmoc solid phase peptide synthesis or attachment of the fluorescein label to the N(alpha)-amino group of a lysine with further incorporation of a mannosylated peptide unit through the side chain N(epsilon)-amino group. The latter strategy proved more effective in that it facilitated SPPS by positioning the growing mannosylated peptide chain further removed from the fluorescein label.  相似文献   

9.
Much effort has been made during the last decade to design lectin inhibitors as therapeutics against viral and bacterial adhesion or to control biological functions. The chemical strategy adopted generally consists in the tethering of several binding epitopes on a common scaffold. The resulting multivalent glycoconjugates often display a much higher binding affinity for their targets compared to their monovalent counterparts, a phenomenon designed as the "cluster" or "multivalent effect". Hundreds of multimeric architectures have been designed so far and some of the compounds displayed impressive gains in binding affinity or in vivo efficiency. Progress in this area is, however, hampered by the difficulty to predict the potency of the new multimeric inhibitors. This review presents the recent efforts to probe the important structural features of the synthetic multivalent glycoconjugates for a tight binding with specific lectins. We hope that the reported examples will aid the reader to design efficient multivalent ligands in a more predictable way.  相似文献   

10.
11.
The alpha v beta 3 integrin receptor plays an important role in human metastasis and tumor-induced angiogenesis. Targeting this receptor may provide information about the receptor status of the tumor and enable specific therapeutic planning. Solid-phase peptide synthesis of multimeric cyclo(-RGDfE-)-peptides is described, which offer the possibility of enhanced integrin targeting due to polyvalency effects. These peptides contain an aminooxy group for versatile chemoselective oxime ligation. Conjugation with para-trimethylstannylbenzaldehyde results in a precursor for radioiododestannylation, which would allow them to be used as potential tools for targeting and imaging alpha v beta 3-expressing tumor cells. The conjugates were obtained in good yield without the need of a protection strategy and under mild conditions.  相似文献   

12.
13.
Nowadays, the reference method for the detection of Clostridium tyrobutyricum in milk is the most-probable-number method, a very time-consuming and non-specific method. In this work, the suitability of the use of superparamagnetic beads coated with specific antibodies and peptides for bioseparation and concentration of spores of C. tyrobutyricum has been assessed. Peptide or antibody functionalized nanoparticles were able to specifically bind C. tyrobutyricum spores and concentrate them up to detectable levels. Moreover, several factors, such as particle size (200 nm and 1 μm), particle derivatization (aminated and carboxylated beads), coating method, and type of ligand have been studied in order to establish the most appropriate conditions for spore separation. Results show that concentration of spore is favored by a smaller bead size due to the wider surface of interaction in relation to particle volume. Antibody orientation, related to the binding method, is also critical in spore recovery. However, specific peptides seem to be a better ligand than antibodies, not only due to the higher recovery ratio of spores obtained but also due to the prolonged stability over time, allowing an optimal recovery of spores up to 3 weeks after bead coating. These results demonstrate that specific peptides bound to magnetic nanoparticles can be used instead of traditional antibodies to specifically bind C. tyrobutyricum spores being a potential basis for a rapid method to detect this bacterial target.  相似文献   

14.
A simple and versatile methodology is described for tailoring sugar-functionalised gold nanoclusters (glyconanoparticles) that have 3D polyvalent carbohydrate display and globular shapes. This methodology allows the preparation of glyconanoparticles with biologically significant oligosaccharides as well as with differing carbohydrate density. Fluorescent glyconanoparticles have been also prepared for labelling cells in biological tests. The materials are water soluble, stable under physiological conditions and present an exceptional small core size. All of them have been characterised by (1)H NMR, UV and IR spectroscopy, TEM and elemental analysis. Their highly polyvalent network can mimic glycosphingolipid clustering and interactions at the plasma membrane, providing an controlled system for glycobiological studies. Furthermore, they are useful building blocks for the design of nanomaterials.  相似文献   

15.
《Tetrahedron: Asymmetry》2006,17(2):167-170
The fundamental importance of αvβ3 integrin in a diverse range of biological processes, makes the search for new ligands of this receptors a significant therapeutic goal. We herein report our initial results on the synthesis of 5,6-dihydropyridin-2-one based ligands, containing a rigid heterocyclic core and two appendages mimicking arginine and aspartic acid moieties. In particular, we explored the influence of the scaffold stereochemistry on bioactivity, performing SK-MEL-24 cell-fibronectin adhesion tests on diastereoisomers, that differ in the configuration at C6.  相似文献   

16.
Different classes of Peripheral-type Benzodiazepine Receptor (PBR) ligands were examined and common structural elements were detected and used to develop a rational binding model based on energetically allowed ligand conformations. Two lipophilic regions and one electrostatic interaction site are essential features for high affinity ligand binding, while a further lipophilic region plays an important modulator role. A comparative molecular field analysis, performed over 130 PBR ligands by means of the GRID/GOLPE methodology, led to a PLS model with both high fitting and predictive values (r2 = 0.898, Q2 = 0.761). The outcome from the 3D QSAR model and the GRID interaction fields computed on the putative endogenous PBR ligands DBI (Diazepam Binding Inhibitor) and TTN (Tetracontatetraneuropeptide) was used to identify the amino acids most probably involved in PBR binding. Three amino acids, bearing lipophilic side chains, were detected in DBI (Phe49, Leu47 and Met46) and in TTN (Phe33, Leu31 and Met30) as likely residues underlying receptor binding. Moreover, a qualitative comparison of the molecular electrostatic potentials of DBI, TTN and selected synthetic ligands indicated also similar electronic properties. Convergent results from the modeling studies of synthetic and endogenous ligands suggest a common binding mode to PBRs. This may help the rational design of new high affinity PBR ligands.  相似文献   

17.
18.
The efficient total synthesis of biologically interesting (+/-)-daurichromenic acid is accomplished starting from 2,4-dihydroxy-6-methylbenzoic acid or 2,4-dihydroxy-6-methylbenzaldehyde in one or two steps.  相似文献   

19.
3-Trimethylsilylpropen-1-yl group, as hydroxypropenyl synthons, was easily introduced to several epoxides with the corresponding Grignard reagent derived from 3-bromoallyltrimethylsilane. The introduced skeleton of allyltrimethylsilane was regiospecifically converted to 3-hydroxy-propen-3-yl or 3-hydroxypropen-1-yl group.  相似文献   

20.
The histamine H(3) receptor (H(3)R) is a promising target in the development of new compounds for the treatment of mainly centrally occurring diseases. However, emerging novel therapeutic concepts have been introduced and some indications in the H(3)R field, e.g. migraine, pain or allergic rhinitis, might take advantage of peripherally acting ligands. In this work, kojic acid-derived structural elements were inserted into a well established H(3)R antagonist/inverse agonist scaffold to investigate the bioisosteric potential of γ-pyranones with respect to the different moieties of the H(3)R pharmacophore. The most affine compounds showed receptor binding in the low nanomolar concentration range. Evaluation and comparison of kojic acid-containing ligands and their corresponding phenyl analogues (3-7) revealed that the newly integrated scaffold greatly influences chemical properties (S Log P, topological polar surface area (tPSA)) and hence, potentially modifies the pharmacokinetic profile of the different derivatives. Benzyl-1-(4-(3-(piperidin-1-yl)propoxy)phenyl)methanamine ligands 3 and 4 belong to the centrally acting diamine-based class of H(3)R antagonist/inverse agonist, whereas kojic acid analogues 6 and 7 might act peripherally. The latter compounds state promising lead structures in the development of H(3)R ligands with a modified profile of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号