首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrating 2D culture of adherent mammalian cells with single‐cell western blotting (in situ scWB) uses microfluidic design to eliminate the requirement for trypsin release of cells to suspension, prior to single‐cell isolation and protein analysis. To assay HeLa cells from an attached starting state, we culture adherent cells in fibronectin‐functionalized microwells formed in a thin layer of polyacrylamide gel. To integrate the culture, lysis, and assay workflow, we introduce a one‐step copolymerization process that creates protein‐decorated microwells. After single‐cell culture, we lyse each cell in the microwell and perform western blotting on each resultant lysate. We observe cell spreading after overnight microwell‐based culture. scWB reports increased phosphorylation of MAP kinases (ERK1/2, p38) under hypertonic conditions. We validate the in situ scWB with slab‐gel western blot, while revealing cell‐to‐cell heterogeneity in stress responses.  相似文献   

2.
In addition to rigidity, matrix composition, and cell shape, dimensionality is now considered an important property of the cell microenvironment which directs cell behavior. However, available tools for cell culture in two-dimensional (2D) versus three-dimensional (3D) environments are difficult to compare, and no tools exist which provide 3D shape control of single cells. We developed polydimethylsiloxane (PDMS) substrates for the culture of single cells in 3D arrays which are compatible with high-resolution microscopy. Cell adhesion was limited to within microwells by passivation of the flat upper surface through 'wet-printing' of a non-fouling polymer and backfilling of the wells with specific adhesive proteins or lipid bilayers. Endothelial cells constrained within microwells were viable, and intracellular features could be imaged with high resolution objectives. Finally, phalloidin staining of actin stress fibers showed that the cytoskeleton of cells in microwells was 3D and not limited to the cell-substrate interface. Thus, microwells can be used to produce microenvironments for large numbers of single cells with 3D shape control and can be added to a repertoire of tools which are ever more sought after for both fundamental biological studies as well as high throughput cell screening assays.  相似文献   

3.
The mechanisms by which mitogen-activated protein kinases (MAPK) respond to the input of UV-induced signal transduction pathways and the resulting biological functions are not well understood. We investigated whether the level of oxygen tension of culture was responsible for the differential activation of MAPK and different cellular outcomes in UVC-irradiated cells. The intracellular oxidative level of normal human fibroblast-like cells in a normal atmosphere (normoxic, 20% O2) was increased within 30 min after UVC irradiation. When cells were cultured at lower oxygen tension in the presence of an antioxidant N-acetyl-L-cysteine (NAC) or under physiologically hypoxic (5% O2) conditions, the elevation of the oxidative level by UV-irradiation was significantly reduced. Among MAPK, extracellular-signal related kinase (ERK) 1/2 was activated by UV regardless of the oxidative level, while c-Jun N-terminal kinase (JNK) activation was inhibited in NAC-treated and in hypoxic cultures. In addition, in cultures at lower oxygen tension, there was less apoptosis and cell survival was enhanced. These results suggest that UV-induced oxidative stress was responsible for intracellular signaling through the JNK pathway. Furthermore, the balance between ERK1/2 and JNK activities after UV irradiation under different oxygen tensions possibly modified cellular outcome in response to UV.  相似文献   

4.
Over the past few years there has been a great deal of interest in reducing experimental systems to a lab-on-a-chip scale. There has been particular interest in conducting high-throughput screening studies using microscale devices, for example in stem cell research. Microwells have emerged as the structure of choice for such tests. Most manufacturing approaches for microwell fabrication are based on photolithography, soft lithography, and etching. However, some of these approaches require extensive equipment, lengthy fabrication process, and modifications to the existing microwell patterns are costly. Here we show a convenient, fast, and low-cost method for fabricating microwells for cell culture applications by laser ablation of a polyester film coated with silicone glue. Microwell diameter was controlled by adjusting the laser power and speed, and the well depth by stacking several layers of film. By using this setup, a device containing hundreds of microwells can be fabricated in a few minutes to analyze cell behavior. Murine embryonic stem cells and human hepatoblastoma cells were seeded in polyester microwells of different sizes and showed that after 9 days in culture cell aggregates were formed without a noticeable deleterious effect of the polyester film and glue. These results show that the polyester microwell platform may be useful for cell culture applications. The ease of fabrication adds to the appeal of this device as minimal technological skill and equipment is required.  相似文献   

5.
Park MC  Hur JY  Kwon KW  Park SH  Suh KY 《Lab on a chip》2006,6(8):988-994
We present a simple cell docking method induced by receding meniscus to capture non-adherent yeast cells onto microwells inside a microfluidic channel. Microwells were fabricated either by capillary moulding of UV curable polyurethane acrylate (PUA) onto glass substrate or direct replica moulding of poly(dimethyl siloxane) (PDMS). A cell suspension of the budding yeast, Saccharomyces cerevisiae, was introduced into the microfluidic channel by surface tension driven capillary flow and a receding meniscus was subsequently generated by evaporation. As the meniscus progressed, one to multiple yeast cells were spontaneously captured onto microwells by lateral capillary force created at the bottom of the meniscus. Using this cell-based platform, we observed the response of yeast cells upon stimulation by a mating pheromone (alpha-factor) by monitoring the expression of green fluorescent protein (GFP) with time. It was observed that alpha-factor triggered the expression of GFP at 60 min after stimulation and the fluorescence intensity was sustained for an additional 60 min without changes.  相似文献   

6.
The purpose of this study was to investigate the effect of microstructured material surface on cell adhesion and locomotion in real-time. ArF excimer laser direct-writing ablation was used to fabricate microwell patterns with precise control of size and spacing on glass. The influence of the ablation process parameters (laser fluence, pulse number and repetition rate) on the micromachining quality (depth, width, aspect ratio and edge effects) of the microwells was established. Human fibroblast cells, as an example of anchorage-dependent cells, were seeded onto the microstructured glass substrate and time-lapse microscopy was used to study cell adhesion and locomotion. The interaction with microstructured materials resulted in fibroblast cell repulsion and the cells exhibited a higher locomotion speed (75.77±3.36 μm/h) on the structures in comparison with plane glass control (54.01±15.53 μm/h). Further studies are needed to firmly establish the potential of microstructuring, for example, in elongating the life spans of implantable devices.  相似文献   

7.
C Kim  JH Bang  YE Kim  SH Lee  JY Kang 《Lab on a chip》2012,12(20):4135-4142
This paper proposes a new cytotoxicity assay in a microfluidic device with microwells and a distributive microfluidic channel network for the formation of cancer cell spheroids. The assay can generate rapid and uniform cell clusters in microwells and test in situ cytotoxicity of anticancer drugs including sequential drug treatments, long term culture of spheroids and cell viability assays. Inlet ports are connected to the microwells by a hydraulic resistance network. This uniform distribution of cell suspensions results in regular spheroid dimensions. Injected cancer cells were trapped in microwells, and aggregated into tumor spheroids within 3 days. A cytotoxicity test of the spheroids in microwells was subsequently processed in the same device without the extraction of cells. The in situ cytotoxicity assay of tumor spheroids in microwells was comparable with the MTT assay on hanging drop spheroids using a conventional 96-well plate. It was observed that the inhibition rate of the spheroids was less than that in the 2D culture dish and the effect on tumor spheroids was different depending on the anticancer drug. This device could provide a convenient in situ assay tool to assess the cytotoxicity of anticancer drugs on tumor spheroids, offering more information than the conventional 2D culture plate.  相似文献   

8.
Huang L  Xie L  Boyd JM  Li XF 《The Analyst》2008,133(5):643-648
We report a new technique for the continuous and real-time measurement of microparticle-induced cellular responses using a real-time cell-electronic sensing (RT-CES) technology. The method involves the use of microelectrode-embedded microwells seeded with one of two lung cancer carcinoma cell lines (A549 and SK-MES-1), allowing for continuous measurements of impedance. The change in impedance that is automatically converted to the cell index is linearly correlated with the numbers of the seeding cells during the log phase, providing quantitative measurement of cytotoxicity. After 24 h of initial incubation in 96 microwells, the cultures are treated with microparticles, and changes in the cell index are monitored in real time. Multiple data, including dose response curves, IC(50) (a concentration inhibiting 50% cell growth), and cell-specific and particulate-specific cell responses, are obtained from a single set of experiments. SK-MES-1 cells consistently showed more severe effects and lower IC(50) values than A549 cells when they were treated with quartz particle suspensions. The different effects detected using the RT-CES technique were related to morphological change and apoptosis, supported by the scanning electronic microscopy and flow cytometry results. The method is further used to test the cytotoxicity of two PM(10) standard reference materials of urban air dust and diesel particulates, demonstrating the potential application of this new technique for biomonitoring of air particulates.  相似文献   

9.
Park MC  Hur JY  Cho HS  Park SH  Suh KY 《Lab on a chip》2011,11(1):79-86
Extracting single-cell information during cellular responses to external signals in a high-throughput manner is an essential step for quantitative single-cell analyses. Here, we have developed a simple yet robust microfluidic platform for measuring time-course single-cell response on a large scale. Our method combines a simple microwell-based cell docking process inside a patterned microfluidic channel, with programmable time-course live-cell imaging and software-aided fluorescent image processing. The budding yeast, Saccharomyces cerevisiae (S. cerevisiae), cells were individually captured in microwells by multiple sweeping processes, in which a cell-containing solution plug was actively migrating back and forth several times by a finger-pressure induced receding meniscus. To optimize cell docking efficiency while minimizing unnecessary flooding in subsequent steps, circular microwells of various channel dimensions (4-24 μm diameter, 8 μm depth) along with different densities of cell solution (1.5-6.0 × 10(9) cells per mL) were tested. It was found that the microwells of 8 μm diameter and 8 μm depth allowed for an optimal docking efficiency (>90%) without notable flooding issues. For quantitative single-cell analysis, time-course (time interval 15 minute, for 2 hours) fluorescent images of the cells stimulated by mating pheromone were captured using computerized fluorescence microscope and the captured images were processed using a commercially available image processing software. Here, real-time cellular responses of the mating MAPK pathway were monitored at various concentrations (1 nM-100 μM) of mating pheromone at single-cell resolution, revealing that individual cells in the population showed non-uniform signaling response kinetics.  相似文献   

10.
This work was concerned with the dependence of the interfacial tension (Gamma(SL)) on surface degree of oxygen content and on polymer branching degree. The static Gamma(SL) was evaluated by contact angle (theta;(c)) and the dynamic Gamma(SL) by fluorescence depolarization of molecular probes seeded in induced flows of monoethylene glycol. The latter results were interpreted using statistical covariant analysis. Two different systems of flowing films were studied: free films flowing on the surfaces on which they impinge and films flowing inside 1-mm-thick microflow cells. The solid surfaces were polyethylene of low density, medium density, high density, and linear with low density, polypropylene, vinyl acetate co-polymer with oxygen content of 15% and 28%, borosilicate, and tin dioxide. Increase in oxygen content of the surface decreased both the static and the dynamic Gamma(SL), which demonstrated that the presence of oxygen atoms hindered wetting. Only the dynamical Gamma(SL) was sensitive to polymer branching, and it increased as branching degree decreased. This was attributed to the higher hydrogen-atom density at the surface, which favored temporary intermolecular bonds between the surface and the flowing liquid.  相似文献   

11.
We report noninvasive autofluorescence mitochondrial imaging in cultured human corneal endothelial cells (HCECs). HCECs harvested from eye bank corneas were cultured in thin glass-bottom plates. Mitochondria were imaged with an autofluorescence microscope using a DAPI filter set (excitation: G365, emission: band pass 445/50) and then, after fixation with 4% paraformaldehyde, cells were stained with MitoTracker Green FM (MTG). Both images were aligned using a linear conformal algorithm for image mapping based on manually selected corresponding feature points, and then mathematically compared using two-dimensional spatial image correlation coefficients. Autofluorescence imaging provided highly resolved mitochondrial signals from living HCECs, comparable to those taken with MTG. Both techniques yielded very similar images at high magnification and high resolution, demonstrating the tubular morphology and cytoplasmic distribution that are characteristic of mitochondria. Image registration using a linear conformal mapping technique and cross-correlations showed high correlation of overlapping autofluorescence and MTG images. This study validates the novel use of autofluorescence vital imaging as a noninvasive, inexpensive and functional alternative to the mitochondria-specific dyes in cultured HCEC. This noninvasive mitochondrial imaging technique can be useful in future applications studying mitochondrial biology of ocular cells.  相似文献   

12.
Horii M  Shinohara H  Iribe Y  Suzuki M 《The Analyst》2011,136(13):2706-2711
Recently, several papers indicated that the surface plasmon resonance (SPR) technique was available to monitor stimulation responses of mammalian cells adhered on sensor chips. On the other hand, the newly developed two-dimensional SPR (2D-SPR) imager system can obtain 2D-images of local refractive index change on the surface of a gold thin film. From these backgrounds, we expected that the 2D-SPR imager can visualize the individual response of many mammalian cells, simultaneously. Here, we report the observation of an allergenic response of a model mast cell, rat basophilic leukaemia cell (RBL-2H3), by using the high magnification 2D-SPR imaging system after pre-sensitization with 0.1 μg mL(-1) anti-dinitrophenyl immunoglobulin E (anti-DNP IgE). The response of the cells was successfully observed as the increment of the SPR signal (reflection intensity) upon stimulation with 0.1-1000 ng mL(-1) DNP-modified bovine serum albumin (DNP-BSA).  相似文献   

13.
Directed differentiation of embryonic stem (ES) cells is useful for creating models of human disease and could potentially generate a wide array of functional cell types for therapeutic applications. Methods to differentiate ES cells often involve the formation of cell aggregates called embryoid bodies (EBs), which recapitulate early stages of embryonic development. EBs are typically made from suspension cultures, resulting in heterogeneous structures with a wide range of sizes and shapes, which may influence differentiation. Here, we use microfabricated cell-repellant poly(ethylene glycol) (PEG) wells as templates to initiate the formation of homogenous EBs. ES cell aggregates were formed with controlled sizes and shapes defined by the geometry of the microwells. EBs generated in this manner remained viable and maintained their size and shape within the microwells relative to their suspension counterparts. Intact EBs could be easily retrieved from the microwells with high viability (>95%). These results suggest that the microwell technique could be a useful approach for in vitro studies involving ES cells and, more specifically, for initiating the differentiation of EBs of greater uniformity based on controlled microenvironments.  相似文献   

14.
《中国化学快报》2021,32(11):3446-3449
Single-cell imaging, a powerful analytical method to study single-cell behavior, such as gene expression and protein profiling, provides an essential basis for modern medical diagnosis. The coding and localization function of microfluidic chips has been developed and applied in living single-cell imaging in recent years. Simultaneously, chip-based living single-cell imaging is also limited by complicated trapping steps, low cell utilization, and difficult high-resolution imaging. To solve these problems, an ultra-thin temperature-controllable microwell array chip (UTCMA chip) was designed to develop a living single-cell workstation in this study for continuous on-chip culture and real-time high-resolution imaging of living single cells. The chip-based on ultra-thin ITO glass is highly matched with an inverted microscope (or confocal microscope) with a high magnification objective (100 × oil lens), and the temperature of the chip can be controlled by combining it with a home-made temperature control device. High-throughput single-cell patterning is realized in one step when the microwell array on the chip uses hydrophilic glass as the substrate and hydrophobic SU-8 photoresist as the wall. The cell utilization rate, single-cell capture rate, and microwell occupancy rate are all close to 100% in the microwell array. This method will be useful in rare single-cell research, extending its application in the biological and medical-related fields, such as early diagnosis of disease, personalized therapy, and research-based on single-cell analysis.  相似文献   

15.
16.
Lee HJ  Kim HS  Kim HO  Koh WG 《Lab on a chip》2011,11(17):2849-2857
This paper describes the development of multi-functional nanofiber scaffolds consisting of multiple layers of nanofiber scaffolds and nanofiber-incorporated poly(ethylene glycol) (PEG) hydrogels. As a proof-of-concept demonstration, we fabricated micropatterned polymeric nanofiber scaffolds that were capable of simultaneously generating cellular micropatterns within a biomimetic environment and detecting cellular metabolic products within well-defined microdomains. To achieve this goal, we designed nanofiber scaffolds with both vertical and lateral microdomains. Vertically heterogeneous structures that were responsible for multi-functionality were realized by preparing double-layered nanofiber scaffolds consisting of an antibody-immobilized bottom layer of nanofibers and an upper layer of bare polystyrene (PS) nanofibers by a two-step sequential electrospinning process. Photopatterning of poly(ethylene glycol) (PEG) hydrogel on the electrospun nanofibers produced laterally heterogeneous micropatterned nanofiber scaffolds made of hydrogel microwells filled with a nanofibrous region, which is capable of generating cell and protein micropatterns due to the different interactions that cells and proteins have with PEG hydrogels and nanofibers. When HepG2 cells were seeded into resultant nanofiber scaffolds, cells selectively adhered within the 200 μm × 200 μm PS fiber microdomain and formed 180.2 ± 6.7 μm spheroids after 5 days of culture in the upper layer. Furthermore, immobilized anti-albumin in the bottom layer detected albumin secreted by micropatterned HepG2 cells with higher sensitivity than flat PS substrates, demonstrating successful accomplishment of dual functions using micropatterned double-layered nanofiber scaffolds.  相似文献   

17.
Organizing leukocytes into high-density arrays makes these cells amenable to rapid optical characterization and subsequent sorting, pointing to clinical and basic science applications. The present paper describes development of a cytometry platform for creating high-density leukocyte arrays and demonstrates retrieval of single cells from the array. Poly(ethylene glycol)(PEG) photolithography was employed to fabricate arrays of microwells composed of PEG hydrogel walls and glass attachment pads 20 microm x 20 microm and 15 microm x 15 microm in size. PEG micropatterned glass surfaces were further modified with cell-adhesive ligands, poly-L-lysine, anti-CD5 and anti-CD19 antibodies, in order to engineer specific cell-surface interactions within the individual wells. Localization of the fluorescently-labeled proteins in the glass attachment pads of PEG microwells was visualized by fluorescence microscopy. Glass slides micropatterned with PEG and cell-adhesive ligands were exposed to T-lymphocytes for 30 min. These anchorage-independent cells became selectively captured in the ligand-modified microwells forming high-density cell arrays. Cell occupancy in the microwells was found to be antibody-dependent, reaching 94.6 +/- 2.3% for microwells decorated with T-cell specific anti-CD5 antibodies. Laser capture microdissection (LCM) was investigated as a method for sorting cells from the array and retrieval of single selected cells was demonstrated.  相似文献   

18.
Polystyrene (PS), a standard material for cell culture consumable labware, was molded into microstructures with high fidelity of replication by an elastomeric polydimethylsiloxane (PDMS) mold. The process was a simple, benchtop method based on soft lithography using readily available materials. The key to successful replica molding by this simple procedure relies on the use of a solvent, for example, gamma-butyrolactone, which dissolves PS without swelling the PDMS mold. PS solution was added to the PDMS mold, and evaporation of the solvent was accomplished by baking the mold on a hotplate. Microstructures with feature sizes as small as 3 μm and aspect ratios as large as 7 were readily molded. Prototypes of microfluidic chips made from PS were prepared by thermal bonding of a microchannel molded in PS with a flat PS substrate. The PS microfluidic chip displayed much lower adsorption and absorption of hydrophobic molecules (e.g. rhodamine B) compared to a comparable chip created from PDMS. The molded PS surface exhibited stable surface properties after plasma oxidation as assessed by contact angle measurement. The molded, oxidized PS surface remained an excellent surface for cell culture based on cell adhesion and proliferation. To demonstrate the application of this process for cell biology research, PS was micromolded into two different microarray formats, microwells and microposts, for segregation and tracking of non-adherent and adherent cells, respectively. The micromolded PS possessed properties that were ideal for biological and bioanalytical needs, thus making it an alternative material to PDMS and suitable for building lab-on-a-chip devices by soft lithography methods.  相似文献   

19.
Luo Y  Hossain M  Wang C  Qiao Y  Ma L  Su M 《The Analyst》2012,137(15):3441-3444
This paper reports an image-based, on-chip microtissue radiation biodosimeter that can simultaneously monitor radiation responses of multiple mammalian cell types. The microtissue chip is fabricated by molding molten agarose gel onto microfabricated patterns to form microwells, and seeding a variety of cell suspensions into different microwells inside the agarose gel. The camera of a mobile phone is used to collect images of an array of microtissues, and the color changes of microtissues upon X-ray irradiation allow accurate determination of cell death, which is related to radiation dose. The images can be transferred wirelessly, allowing the biodosimeter to be used for convenient and field deployable monitoring of radiation exposure.  相似文献   

20.
The objective of this study was to evaluate the attachment, proliferation, and differentiation of rat mesenchymal stem cells (MSC) toward the osteoblastic phenotype seeded on polypyrrole (PPy) thin films made by admicellar polymerization. Three different concentrations of pyrrole (Py) monomer (20, 35, and 50 x 10(-3) M) were used with the PPy films deposited on tissue culture polystyrene dishes (TCP). Regular TCP dishes and PPy polymerized on TCP by chemical polymerization without surfactant using 5 x 10(-3) M Py, were used as controls. Rat MSC were seeded on these surfaces and cultured for up to 20 d in osteogenic media. Surface topography was characterized by atomic force microscopy, X-ray photoelectron spectroscopy, and static contact angle. Cell attachment, proliferation, alkaline phosphatase (ALP) activity, and calcium content were measured to evaluate the ability of MSC to adhere and differentiate on PPy-coated TCP. Increased monomer concentrations resulted in PPy films of increased thickness and surface roughness. PPy films generated by different monomer concentrations induced drastically different cellular events. A wide spectrum of cell attachment characteristics (from excellent cell attachment to the complete inability to adhere) were obtained by varying the monomer concentration from 20 m to 50 x 10(-3) M. In particular the 20 x 10(-3) M PPy thin films demonstrated superior induction of MSC osteogenicity, which was comparable to standard TCP dishes, unlike PPy films of similar thickness prepared by chemical polymerization without surfactant. Adhesion of mesenchymal stem cells on tissue culture plates (TCP) coated with polypyrrole thin films made by admicellar polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号