首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A series of CuO/Al(2)O(3)-ZrO(2) catalysts with Cu loadings varying from 1.0 to 20 wt % were prepared and characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), temperature-programmed desorption (TPD) of CO(2) and NH(3), electron spin resonance (ESR), and Brunauer-Emmett-Teller surface area measurements. The dispersion and metal area of copper were determined by the N(2)O decomposition method. XRD results suggest that the copper oxide is present in a highly dispersed amorphous state at copper loadings < 10 wt % and as a crystalline CuO phase at higher Cu loadings. ESR results suggest the presence of two types of copper species on the Al(2)O(3)-ZrO(2) support. TPR results suggest well-dispersed copper oxide species at low Cu loadings and crystalline copper oxide species at high Cu loadings. Well-dispersed copper oxide species were reduced more easily than large copper oxide species by H(2). The results of CO(2) TPD suggest that the basicity of the catalysts was found to increase with an increase of copper loading up to 5.0 wt % and decreases with a further increase of copper loading. The results of NH(3) TPD suggest that the acidity of the catalysts was found to decrease with an increase of copper loading up to 5.0 wt % and increases with a further increase of copper loading. The catalytic properties were evaluated for the vapor-phase dehydrogenation of cyclohexanol to cyclohexanone and correlated with the results of CO(2) TPD measurements and the dispersion of Cu on the Al(2)O(3)-ZrO(2) support.  相似文献   

2.
铜基氧化锆载体合成甲醇催化剂的结构表征   总被引:3,自引:0,他引:3  
以XRD,EXAFS和ESR等手段考察了CuO/ZrO2催化剂及其还原态的结构,结果表明,在CuO/ZrO2中铜以CuO的形式存在,ZrO2载体对所负载的CuO的结构有影响,CuO的分散度与焙烧温度有关,在适当的温度下焙烧,负载于ZrO2上的CuO可自发分散,在还原态试样中铜主要以有金属的形式存在,但是当试样中铜的含量小,铜的分散度高时有铜的氧化物存在,其Cu-O键距介于CuO与CuO2之间,Cu  相似文献   

3.
4.
A series of zirconia supported copper oxide catalysts with varying copper loadings (1.2-19.1 wt %) were prepared by impregnation method. The catalysts were characterized by X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), and temperature-programmed desorption of CO2. Copper dispersion and metal area were determined by N2O decomposition method. X-ray diffraction patterns indicate the presence of crystalline CuO phase beyond 2.7 wt % of Cu on zirconia. UV-visible diffuse reflectance spectra suggest the presence of two types of copper species on the ZrO2 support. XPS peaks intensity ratio of Cu 2p3/2 and Zr 3d5/2 was compared with Cu dispersion calculated from N2O decomposition. TPR patterns reveal the presence of highly dispersed copper oxide at lower temperatures and bulk CuO at higher temperatures. The basicity of the catalysts was found to increase with Cu loading, and the activity of the catalysts was also found to increase with the increase in Cu loading up to 2.7 wt % Cu loading. The catalytic properties were evaluated for the dehydrogenation of cyclohexanol to cyclohexanone and were related to surface properties of the copper species supported on zirconia.  相似文献   

5.
Cu(x)Ce(1-x)O(2-y) mixed oxide catalysts were prepared by different preparation procedures: co-precipitation, the sol-gel peroxide route, and the sol-gel citric acid-assisted route. The resulting solids were investigated by means of XRD, BET, H(2) and CO temperature-programmed reduction (TPR), oxidation (TPO) and desorption (TPD) analyses, and N(2)O pulse selective reaction. It was confirmed that H(2) (CO) consumed for complete reduction of well-dispersed and bulk-like CuO phases to Cu(0), reduction of surface ceria and H(2) (CO) adsorption on the catalyst surface contribute to the total H(2) (CO) consumption. Among catalysts examined, the Cu(0.15)Ce(0.85)O(2-y) mixed oxide sample prepared by means of co-precipitation method exhibits the highest activity and stability for water-gas shift (WGS) pulse reaction in the range of employed operating conditions. WGS activity of copper-ceria mixed oxide catalysts is determined by the extent of surface ceria reduction and dispersion of copper species.  相似文献   

6.
It is well-known that inorganic nanocrystals are a benchmark model for nanotechnology, given that the tunability of optical properties and the stabilization of specific phases are uniquely possible at the nanoscale. Copper (I) oxide (Cu(2)O) is a metal oxide semiconductor with promising applications in solar energy conversion and catalysis. To understand the Cu/Cu(2)O/CuO system at the nanoscale, we have developed a method for preparing highly uniform monodisperse nanocrystals of Cu(2)O. The procedure also serves to demonstrate our development of a generalized method for the synthesis of transition metal oxide nanocrystals. Cu nanocrystals are initially formed and subsequently oxidized to form highly crystalline Cu(2)O. The volume change during phase transformation can induce crystal twinning. Absorption in the visible region of the spectrum gave evidence for the presence of a thin, epitaxial layer of CuO, which is blue-shifted, and appears to increase in energy as a function of decreasing particle size. XPS confirmed the thin layer of CuO, calculated to have a thickness of approximately 5 A. We note that the copper (I) oxide phase is surprisingly well-stabilized at this length scale.  相似文献   

7.
二氧化碳在铜氧化膜电极上的光电化学还原   总被引:1,自引:0,他引:1  
本文研究了CO_2在铜阳极氧化膜电极上的光电化学还原行为,在还原电量小于0.1C时,CH_4 的产率较高;还原电量大于2.0C时,主要还原产物为CH_3OH,还对CH_4的产率随外加电位、还原电量和铜阳极氧化膜制备条件的变化关系进行了研究,并对其还原机理作了初步探讨。  相似文献   

8.
The IR spectroscopic investigation of both the adsorption of carbon monoxide and the interaction of oxygen and CO on the surface of copper colloids is described for the first time. The copper colloids were produced by pyrolysis of [Cu(OCH(Me)CH(2)NMe(2))(2)] in hot n-hexadecylamine. Upon contact to synthetic air Cu/Cu(x)O core-shell particles are formed. The treatment of these particles with CO results in the reestablishment of pure Cu(0) particles. These results demonstrate that small molecules penetrate the ligand shell of the nanoparticles and reversibly adsorb at the surface without affecting the particle morphology and size distribution.  相似文献   

9.
In this paper a novel simple method for preparing two different catalysts with various‐valences copper was reported. Carbon nanofibers supported copper‐cuprous oxide nanoparticles (Cu‐Cu2O NPs/CNFs) and copper oxide nanoparticles (CuO NPs/CNFs) through electrospinning, adsorption and reduction in the high‐pressure hydrogenation and the high‐temperature calcination methods. These catalysts were investigated by a series of characterizations and were applied in reaction in nitrogen atmosphere, which had a good catalytic activity and selectivity of benzaldehyde for the reaction. Above all, the new study has been certified clearly, in which Cu‐Cu2O NPs/CNFs and CuO NPs/CNFs composite catalysts enhanced the generation of benzaldehydeand the excellent catalytic properties were exhibited.  相似文献   

10.
The ice/water interface is a common and important part of many biological, environmental, and technological systems. In contrast to its importance, the system has not been extensively studied and is not well understood. Therefore, in this paper the properties of the H2O ice/water and D2O ice/water interfaces were investigated. Although the zeta potential vs pH data points were significantly scattered, it was determined that the isoelectric point (iep) of D2O ice particles in water at 3.5°C containing 10−3 M NaCl occurs at about pH 3.0. The negative values of the zeta potential, calculated from the electrophoretic mobility, seem to decrease with decreasing content of NaCl, while the iep shifts to a higher pH. The point of zero charge (pzc) of D2O ice and H2O ice, determined by changes in pH of 10−4 M NaCl aqueous solution at 0.5°C after the ice particle addition, was found to be very different from the iep and equal to pH 7.0 ± 0.5. The shift of the iep with NaCl concentration and the difference in the positions of the iep and pzc on the pH scale point to complex specific adsorption of ions at the interface. Interestingly, similar values of iep and pzc were found for very different systems, such as hydrophilic ice and highly hydrophobic hexadecane droplets in water. A comparison of the zeta potential vs pH curves for hydrophilic ice and hydrophobic materials that do not possess dissociative functional groups at the interface (diamond, air bubbles, bacteria, and hexadecane) indicated that all of them have an iep near pH 3.5. These results indicate that the zeta potential and surface charge data alone cannot be used to delineate the electrochemical properties of a given water/moiety interface because similar electrical properties do not necessary mean a similar structure of the interfacial region. A good example is the aliphatic hydrocarbon/water interface in comparison to the ice/water interface. Although the experiments were carried out with care, both the zeta potential, measured with a precise ZetaPlus meter, and ΔpH values (a measure of surface charge) vs pH were significantly scattered, and the origin of dissemination of the data points was not established. Differently charged ice particles and not fully equilibrium conditions at the ice/water interface may have been responsible for the dissemination of the data.  相似文献   

11.
CO催化氧化中氧化铜对CeO2的调变作用   总被引:2,自引:1,他引:1  
采用柠檬酸络合法制备并应用XRD、ICP和微反活性等方法研究了Cu-Ce-O催化剂体系,当体系中铜含量较少,焙烧温度较低时,以萤石矿型结构存在,CuO掺杂进入CeO2的晶格中;当铜含量较多,焙烧温度较高时,除了以萤石矿型结构存在外,还伴随有单斜晶系CuO的生成,焙烧温度高达1000℃时,体系无其它结构型式的晶相形成,研究发现少量的CuO使体系催化氧化CO的活性大大提高;只有极少量的CuO进入CeO2的晶格内部,该催化剂最佳配方是Cu/(Cu+Ce)原子百分比为15%,700℃焙烧4h,其中起高催化氧化作用的是由CuO掺杂调变而成的萤石矿型复合氧化物,其组成为Cu0.06Ce0.94O1.94。  相似文献   

12.
氧化铈气凝胶担载氧化铜催化剂上的一氧化碳氧化   总被引:15,自引:1,他引:15  
 以一氧化碳氧化为探针反应,考察了氧化铈气凝胶担载氧化铜催化剂的催化活性,研究了催化剂中氧化铜的含量、载体及催化剂的焙烧温度对催化剂活性的影响.结果表明,氧化铈气凝胶担载的氧化铜催化剂对一氧化碳氧化反应呈现出高催化活性,适当温度下焙烧载体及催化剂有利于提高催化剂的催化活性;随着催化剂中氧化铜含量的增加,一氧化碳完全转化的温度降低,但当w(CuO)>12%时,过量的氧化铜以体相形式而不是以高分散形式存在,对催化剂活性的影响很小.  相似文献   

13.
The zeta potential of planar sapphire substrates for three different crystallographic orientations was measured by a streaming potential technique in the presence of KCl and (CH3)4NCl electrolytes. The streaming potential was measured for large single crystalline C-plane (0001), A-plane (1120), and R-plane (1102) wafers over a full pH range at three or more ionic strengths ranging from 1 to 100 mM. The roughness of the epi-polished wafers was verified using atomic force microscopy to be on the order of atomic scale, and X-ray photoelectron spectroscopy (XPS) was used to ensure that the samples were free of silica and other contaminants. The results reveal a shift in the isoelectric point (iep) of the three samples by as much as two pH units, with the R-plane surface exhibiting the most acidic behavior and the C-plane samples having the highest iep. The iep at all ionic strengths was tightly centered around a single pH for each wafer. These values of iep are substantially different from the range of pH 8-10 consistently reported in the literature for alpha-Al2O3 particles. Particle zeta potential measurements were performed on a model powder using phase analysis light scattering, and the iep was confirmed to occur at pH 8. Modified Auger parameters (MAP) were calculated from XPS spectra of a monolayer of iridium metal deposited on the sapphire by electron beam deposition. A shift in MAP consistent with the observed differences in iep of the surfaces confirms the effect of surface structure on the transfer of charge between the Ir and sapphire, hence accounting for the changes in acidity as a function of crystallographic orientation.  相似文献   

14.
NO reduction by CO was investigated over CuO/γ-Al2O3, Mn2O3/γ-Al2O3, and CuOMn2O3/γ-Al2O3 model catalysts before and after CO pretreatment at 300 °C. The CO-pretreated CuO-Mn2O3/γ-Al2O3 catalyst exhibited higher catalytic activity than did the other catalysts. Based on X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV/Vis diffuse reflectance spectroscopy (DRS), Raman, and H2-temperature-programmed reduction (TPR) results, as well as our previous studies, the possible interaction model between dispersed copper and manganese oxide species as well as γ-Al2O3 surface has been proposed. In this model, Cu and Mn ions occupied the octahedral vacant sites of γ-Al2O3, with the capping oxygen on top of the metal ions to keep the charge conservation. For the fresh CuO/γ-Al2O3 and Mn2O3/γ-Al2O3 catalysts, the -Cu-O-Cu- and -Mn-O-Mn- species were formed on the surface of γ-Al2O3, respectively; but for the fresh CuO-Mn2O3/γ-Al2O3 catalyst, -Cu-O-Mn- species existed on the surface of -Al2O3. After CO pretreatment, -Cu-□-Cu- and -Mn-□-Mn- (□ represents surface oxygen vacancy (SOV)) species would be formed in CO-pretreated CuO/γ-Al2O3 and CO-pretreated Mn2O3/γ-Al2O3 catalysts, respectively; whereas -Cu-□-Mn- species existed in CO-pretreated CuO-Mn2O3/γ-Al2O3. Herein, a new concept, surface synergetic oxygen vacancy (SSOV), which describes the oxygen vacancy formed between the individual Mn and Cu ions, is proposed for CO-pretreated CuO-Mn2O3/γ-Al2O3 catalyst. In addition, the role of SSOV has also been approached by NO temperature-programmed desorption (TPD) and in situ FTIR experiments. The FTIR results of competitive adsorption between NO and CO on all the CO-pretreated CuO/γ-Al2O3, Mn2O3/γ-Al2O3, and CuO-Mn2O3/γ-Al2O3 samples demonstrated that NO molecules mainly were adsorbed on Mn2+ and CO mainly on Cu+ sites. The current study suggests that the properties of the SSOVs in CO-pretreated CuO-Mn2O3/γ-Al2O3 catalyst were significantly different to SOVs formed in CO-pretreated CuO/γ-Al2O3 and Mn2O3/γ-Al2O3 catalysts, and the SSOVs played an important role in NO reduction by CO.  相似文献   

15.
Interactions of selenate with copper(I) oxide particles   总被引:1,自引:0,他引:1  
The chemical mechanisms responsible for the immobilization of selenate (SeO4(2-) from aqueous solutions on cuprite (Cu2O) particles were determined from batch experiments. This was achieved by performing both solution-phase analyses and characterization of solid particles by X-ray photoelectron spectroscopy and transmission electron microscopy techniques, after equilibration of cuprite particles with selenate-containing solutions at various pH values, solid-to-solution ratios, and ionic strengths. Two distinct mechanisms have been pointed out. In the acidic medium, where the acid-catalyzed dissolution of cuprite into CuI species occurs, the immobilization of selenate implies a redox reaction with transient CuI leading to the precipitation of copper(II) selenite, CuSeO3. In the absence of protons added in the medium, Cu2O is chemically stable and immobilization of SeO4(2-) is essentially due to adsorption in the form of an outer-sphere surface complex. The uptake level of selenate by Cu2O is markedly lower than that observed for selenite species in the same conditions.  相似文献   

16.
Zhang W  Wen X  Yang S 《Inorganic chemistry》2003,42(16):5005-5014
We report the synthesis of nanostructured copper compound films on a copper surface under mild conditions. A series of low-dimensional structures including Cu(OH)(2) fibers and scrolls, CuO sheets and whiskers, and Cu(2)(OH)(2)CO(3) rods have been successfully grown on the copper surfaces at ambient temperature and pressure. Most of the structures are phase-pure single crystallites. The films were formed by the direct oxidation of copper in aqueous solutions of NaOH with an oxidant (NH(4))(2)S(2)O(8). The evolution of the ultrafine structures as a function of the reaction conditions has been revealed, from fibers of Cu(OH)(2) to scrolls of Cu(OH)(2) to sheets or whiskers of CuO. By replacing NaOH with NaHCO(3) in the synthesis, square/rectangular rod arrays of Cu(2)(OH)(2)CO(3) were obtained. The controlled reactions allow the large-scale, template-free, cost-effective synthesis of copper compound films with ordered, uniform, stable, ultrafine structures.  相似文献   

17.
A novel type adsorbent was prepared by in situ precipitation of Fe(OH)3 on the surface of activated Al2O3 as a support material. The iron content of the adsorbent was 0.31+/-0.003% m/m (56.1 mmol/g); its mechanical and chemical stability proved to be appropriate in solutions. The total capacity of the adsorbent was 0.12 mmol/g, and the pH of zero point of charge, pH(zpc) = 6.9+/-0.3. Depending on the pH of solutions, the adsorbent can be used for binding of both anions and cations, if pH(eq) < pH(zpc) anions are sorbed on the surface of adsorbent (S) through [SOH2+] and [SOH] groups. A graphical method was used for the determination of pH(iep) (isoelectric points) of the adsorbent and values of pH(iep) = 6.1+/-0.3 for As(III) and pH(iep) = 8.0+/-0.3 for As(V) ions were found. The amount of surface charged groups (Q) was about zero within the a pH range of 6.5-8.6, due to the practically neutral surface formed on the adsorption of As(V) ions. At acidic pH (pH 4.7), Q = 0.19 mol/kg was obtained. The adsorption of arsenate and arsenite ions from solutions of 0.1-0.4 mmol/L was represented by Langmuir-type isotherms. A great advantage of the adsorbent is that it can be used in adsorption columns, and low waste technology for removal of arsenic from drinking water can be developed.  相似文献   

18.
The aging process of pure copper precursors and copper-zinc binary precursors were studied by XRD, TG-DTG and TPR techniques. The catalytic activity and stability of CuO/ZnO were tested using fixed-bed flow reactor, and the physical properties of the catalysts and Cu species were characterized with N2 adsorption and N2O passivation method, respectively. For the Cu-Zn binary system prepared at the precipitating condition of pH=8.0 and temperature=80℃, the initial phase was a mixture of copper nitrate hydroxide Cu2(NO3)(OH)3, georgeite and hydrozincite Zn5(CO3)2(OH)6. By increasing the duration of its aging time, the phase of Cu2(NO3)(OH)2 first transited to georgeite, and then interdiffused into Zns(CO3)2(OH)6 and resulted in two new phases: rosasite (Cu,Zn)2CO3(OH)2 and aurichalcite (Zn,Cu)5(CO3)2(OH)6. The former phase was much easier to be formed than the latter one, while the latter phase was more responsible for the activity of methanol synthesis than the former one. It is found that the composition and structure of the precursors altered obviously after the colour transition point. The experimental results showed that methanol synthesis is a structure-sensitive catalytic reaction.  相似文献   

19.
The distribution of neutral copper oxide clusters in the gas phase created by laser ablation is detected and characterized through time-of-flight mass spectroscopy (TOFMS). The neutral copper oxide clusters are ionized by two different approaches: Multiphoton absorption of 355 and 193 nm radiation; and single photon absorption of 118 nm radiation. Based on the observed cluster patterns as a function of experimental conditions (e.g., copper oxide or metal sample, ablation laser power, expansion gas, etc.) and on the width of the TOFMS features, one can uncover the true neutral cluster distribution of CumOn species following laser ablation of the sample. Ablation of a metal sample generates only small neutral CumOn clusters for m less, similar 4 and n approximately 1, 2. Ablation of copper oxide samples generates neutral clusters of the form CumOm (m < or = 4) and CumO(m-1) (m > 4). These clusters are directly detected without fragmentation using single photon, photoionization with 118 nm laser radiation. Using 355 and 193 nm multiphoton ionization, the observed cluster ions are mostly of the form Cu2mOm+ for 4 < or = m < or = 10 (193 nm ionization) and CumO1,2 (355 nm ionization) for copper oxide samples. Neutral cluster fragmentation due to multiphoton processes seems mainly to be of the form CumO(m,m-1) --> CumO(m/2,m/2+1). Neutral cluster growth mechanisms are discussed based on the cluster yield from different samples (e.g., Cu metal, CuO powder, and Cu2O powder).  相似文献   

20.
A series of copper catalysts supported on TiO2-ZrO2 with copper loading varying from 1.0 to 21.6 wt % were prepared by a wet impregnation method. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy, electron spin resonance (ESR), temperature programmed reduction (TPR), and Brunauer-Emmett-Teller specific surface area measurements. Copper dispersion and metal area were determined by N2O decomposition by the passivation method. XRD results suggest that the copper oxide is present in a highly dispersed amorphous state at copper loadings <16.8 wt % in the sample and as a crystalline CuO phase at higher Cu loadings. Copper dispersion increases with Cu loading up to 5.1 wt % and levels off at higher loadings. The XPS peak intensity ratios of Cu 2p(3/2)/Ti 2p(3/2) and Cu 2p(3/2)/Zr 3d(5/2) were compared with the copper dispersion calculated from N2O decomposition. ESR results suggest the presence of two types of copper species on the TiO2-ZrO2 support. TPR profiles reveal the presence of highly dispersed copper oxide at lower temperatures and bulk CuO at higher temperatures. The catalytic properties were evaluated for the vapor-phase dehydrogenation of cyclohexanol to cyclohexanone and related to the dispersion of Cu on TiO2-ZrO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号