首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of calculating the stability of a three-dimensional swirl flow of a viscous heat-conducting gas are presented. The stability characteristics are determined using the linear time-dependent theory of plane-parallel flow stability. The main undisturbed axisymmetric vortex flow was determined numerically using a quasi-cylindrical approximation for the complete set of Navier-Stokes equations. The circulation of the peripheral velocity in the cocurrent flow surrounding the viscous vortex core was assumed to be constant. In analyzing the stability, nonaxisymmetric perturbations in the shape of waves traveling along the vortex axis with both positive and negative wavenumbers were considered; in these two cases the perturbation rotation is either the same or opposite in sense to the rotation in the vortex core. Neutral stability curves are determined for various values of the swirling parameter and the cocurrent flow Mach number. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 50–59, May–June, 1998.  相似文献   

2.
For verifying the method of calculating the boundary layer in liquid rocket engine (LRE) nozzles developed by the authors on the basis of a differential three-parameter turbulence model, the boundary layer on a plate in a zero-gradient flow is calculated. Over a wide range of variation of the free-stream Mach number, the temperature factor, and the Reynolds number, based on the momentum thickness of the boundary layer, the calculation agrees satisfactorily with the known experimental data, with respect to both integral and local flow and heat transfer characteristics. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 64–78, November–December, 1998. The work received financial support from the Russian Foundation for Basic Research (project No.96-012-00260).  相似文献   

3.
The three-dimensional shape of the shock wave formed ahead of a sonic jet flowing out into a supersonic flow through the surface of a sharp cone is determined. The shape of the wave in the longitudinal and transverse cross-sections of the model is constructed using schlieren photographs taken for various angles of rotation and freestream Mach numbers M=1.75–3. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 41–44, March–April, 1998. This research was carried out with financial support from the Russian Foundation for Basic Research (project No. 95-01-00709a).  相似文献   

4.
D. V. Sadin 《Fluid Dynamics》1994,29(1):156-158
The unsteady filtering flow of a gas described by the equations of motion proposed by Khristianovich in [1] is investigated. It is shown that for the gas flow in the pores a critical regime can develop when the reduced velocity (an analog of the Mach number in gas dynamics) is less than unity. The reduced velocity is the ratio of the flow velocity to the velocity of propagation of small filtering perturbations at a given point of the flow. St Petersburg. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 201–203, January–February, 1994.  相似文献   

5.
Supersonic perfect gas flow in plane and axisymmetric channels with the same duct contour is studied on the basis of a numerical solution of the two-dimensional Navier-Stokes and Euler equations. The calculations were carried out at an inlet Mach number M=4 for various Reynolds numbers and “bell-mouth“ half-angles. The effect of these parameters, as well as that of the flow three-dimensionality, on the flow pattern is demonstrated. In particular, the existence of viscous flow regimes providing the most effective supersonic flow deceleration and a higher degree of total pressure recovery as compared with the inviscid flow is established. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 143–152, March–April, 1998. The study was carried out with the support of the Russian Foundation for Fundamental Research (project No. 95-01-01129a).  相似文献   

6.
The flow with a free-stream Mach number M = 6 around a cylindrical body with a sharp spike is studied. The existence of a supersonic reverse flow for one of the phases of the pulsating flow regime is experimentally validated. A range of spike lengths is determined, which ensures a region of a supersonic reverse flow near the side surface of the spike. The time of existence of the supersonic reverse flow region is shown to be 0.15 of the period of pulsations if the spike length equals the model diameter. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 30–39, July–August, 2007.  相似文献   

7.
Results of a numerical study of three-dimensional supersonic jets propagating in a cocurrent flow are described. Averaged parabolized Navier-Stokes equations are solved numerically on the basis of a developed scheme, which allows calculations in supersonic and subsonic flow regions to be performed in a single manner. A jet flow with a cocurrent flow Mach number 0.05 ⩽ M ⩽ 7.00 is studied, and its effect on the structure of the mixing layer is demonstrated. The calculated results are compared with available experimental and numerical data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 54–63, May–June, 2008.  相似文献   

8.
An approximate system of equations that describe unsteady flow of an inviscid non-heat-conducting gas in a narrow channel of varying area is derived. Generalized characteristics and hyperbolicity conditions are obtained for this system of equations. In connection with characteristics theory, the average Mach number and the flow criticality condition are introduced. Exact solutions that describe steady transonic channel flows are investigated. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 1, pp. 15–27, January–February, 1998.  相似文献   

9.
Supersonic flow past a cylindrical body with a system of transverse jets ejected from its surface at angles of attack α=60–120o is characterized by a complicated gasdynamic flow pattern [1]. The body surface is affected by both the oncoming flow and the ejected jets which shield a portion of the surface from the external flow. This results in considerable transverse and longitudinal pressure gradients appearing on the body surface. The experimental pressure distributions over a cylindrical model with four transverse jets at a Mach number M=4 and α=60°, 90°, and 120° make it possible to study the specific features of the flowfield and derive correlations for the "jet obstacle" dimensions. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 179–183, January–February, 1998.  相似文献   

10.
The conditions of the onset of aeroacoustic resonance phenomena near a plate in a gas flow in a rectangular channel are studied theoretically and experimentally in a two-dimensional formulation. The eigenfrequency as a function of the plate's chord and its position in the channel, the shape of the eigenfunctions, and the effect of the Mach number of the basic gas flow versus the eigenfrequencies and eigenfunctions and the mechanism of self-excited oscillations are determined. A mathematical model by means of which the dependence of the resonance phenomena on the geometrical parameters of the structure were performed is proposed and substantiated. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 2, pp. 69–77, March–April, 1998.  相似文献   

11.
The stability problem of two-dimensional compressible flat-plate boundary layers is handled using the linear stability theory. The stability equations obtained from three-dimensional compressible Navier–Stokes equations are solved simultaneously with two-dimensional mean flow equations, using an efficient shoot-search technique for adiabatic wall condition. In the analysis, a wide range of Mach numbers extending well into the hypersonic range are considered for the mean flow, whereas both two- and three-dimensional disturbances are taken into account for the perturbation flow. All fluid properties, including the Prandtl number, are taken as temperature-dependent. The results of the analysis ascertain the presence of the second mode of instability (Mack mode), in addition to the first mode related to the Tollmien–Schlichting mode present in incompressible flows. The effect of reference temperature on stability characteristics is also studied. The results of the analysis reveal that the stability characteristics remain almost unchanged for the most unstable wave direction for Mach numbers above 4.0. The obtained results are compared with existing numerical and experimental data in the literature, yielding encouraging agreement both qualitatively and quantitatively.   相似文献   

12.
An algorithm for calculation of a spatial compressible turbulent boundary layer on the surface of a pointed body is developed. The algorithm is based on the numerical solution of three-dimensional equations and algebraic models of turbulence. The flow around a hypersonic aircraft model is calculated, and the resultant Stanton numbers are compared with experimental data. The influence of the Mach number, the angle of attack, and the Reynolds number on the boundary-layer parameters is studied. It is shown that the change in the location of the transition zone has a weak effect on the skin-friction coefficient in the region of developed turbulent flow. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090.1Technical University, Delft, the Netherlands. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 115–125, January–February, 1999.  相似文献   

13.
A method of theoretical investigation of the flow field in a two-dimensional (plane-parallel or axisymmetric) overexpanded jet of an ideal perfect gas in the vicinity of the nozzle lip is described. The changes in curvature of the shock wave emanating from the lip, as well as the shock-wave intensity and flow parameters behind the shock are analyzed as functions of the Mach number, pressure ratio in the plane jet, and ratio of specific heats of the gas. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 72–83, May–June, 2006.  相似文献   

14.
The results of an experimental study of the flow past a sphere suspended with a narrow clearance in a circular cylindrical pipe and allowed only lateral movement, are presented. The study was limited to the case of intense vibrations accompanied by impacts between the sphere and the pipe wall. The experiments were conducted in steel and copper pipes at Reynolds numbers varying from 104 to 105 and several values of the sphere mass and the clearance between the sphere and the pipe wall. The self-excited vibration frequency was measured by a newly developed method based on registering the frequency only in the resonance modes which set in when the sphere and pipe vibration eigenfrequencies coincide. The flow was photographed and filmed at various values of the water flow rate. The major nondimensional parameters characterizing the phenomenon considered were revealed, and a universal relation between them and the nondimensional self-excited vibration frequency was established with acceptable accuracy. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 136–143, March–April, 2000. The research was carried out with financial support from the Russian Foundation for Basic Research (project No. 98-01-00152).  相似文献   

15.
Supersonic viscous homogeneous gas flow past axisymmetric smooth nonpointed bodies is analyzed numerically for widely varying Mach and Reynolds numbers and flow geometry. The initial equations of a viscous shock layer are solved by the stabilization method. The effect of the determining parameters on the flow character and the heat transfer distribution along the surface is analyzed. The accuracy and domain of applicability of several approximate approaches to the solution of the problem are estimated. Tomsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 107–117, January–February, 1999. This research was carried out with financial support from the Russian Foundation for Basic Research (project No. 98-01-00298).  相似文献   

16.
The evolution of disturbances in a hypersonic viscous shock layer on a flat plate excited by slow-mode acoustic waves is considered numerically and experimentally. The parameters measured in the experiments performed with a free-stream Mach number M = 21 and Reynolds number Re L = 1.44 · 105 are the transverse profiles of the mean density and Mach number, the spectra of density fluctuations, and growth rates of natural disturbances. Direct numerical simulation of propagation of disturbances is performed by solving the Navier-Stokes equations with a high-order shock-capturing scheme. The numerical and experimental data characterizing the mean flow field, intensity of density fluctuations, and their growth rates are found to be in good agreement. Possible mechanisms of disturbance generation and evolution in the shock layer at hypersonic velocities are discussed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 3–15, September–October, 2006.  相似文献   

17.
A numerical algorithm and code are developed and applied to direct numerical simulation (DNS) of unsteady two-dimensional flow fields relevant to stability of the hypersonic boundary layer. An implicit second-order finite-volume technique is used for solving the compressible Navier–Stokes equations. Numerical simulation of disturbances generated by a periodic suction-blowing on a flat plate is performed at free-stream Mach number 6. For small forcing amplitudes, the second-mode growth rates predicted by DNS agree well with the growth rates resulted from the linear stability theory (LST) including nonparallel effects. This shows that numerical method allows for simulation of unstable processes despite its dissipative features. Calculations at large forcing amplitudes illustrate nonlinear dynamics of the disturbance flow field. DNS predicts a nonlinear saturation of fundamental harmonic and rapid growth of higher harmonics. These results are consistent with the experimental data of Stetson and Kimmel obtained on a sharp cone at the free-stream Mach number 8.  相似文献   

18.
Comparison of low Mach number models for natural convection problems   总被引:2,自引:0,他引:2  
 We investigate in this paper two numerical methods for solving low Mach number compressible flows and their application to single-phase natural convection flow problems. The first method is based on an asymptotic model of the Navier–Stokes equations valid for small Mach numbers, whereas the second is based on the full compressible Navier–Stokes equations with particular care given to the discretization at low Mach numbers. These models are more general than the Boussinesq incompressible flow model, in the sense that they are valid even for cases in which the fluid is subjected to large temperature differences, that is when the compressibility of the fluid manifests itself through low Mach number effects. Numerical solutions are computed for a series of test problems with fixed Rayleigh number and increasing temperature differences, as well as for varying Rayleigh number for a given temperature difference. Numerical difficulties associated with low Mach number effects are discussed, as well as the accuracy of the approximations. Received on 17 January 2000  相似文献   

19.
The problems in the construction of bodies which, satisfying some geometric limitations, are exposed to a plane symmetric flow of a perfect (inviscid and heat-nonconducting) gas with a maximum critical Mach numberM* are considered. Solutions are found by a numerical-analytical method with the use of the variables of the velocity hodograph. The Mach numberM* is found as a function of the geometric characteristics of the sought bodies on the basis of approximation of numerical data. Institute of Mathematics and Mechanics at the Kazan' State University, Kazan' 420008. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 5, pp. 106–115, September–October, 1998.  相似文献   

20.
The dynamics of particles of the disperse phase in a turbulent gas flow in planar shock waves sliding along a solid surface with a trapezoid cavity is examined numerically. Lifting of particles from the cavity walls is calculated in the approximation of a rarefied gas suspension. It is shown that the intensity of the transient shock wave and the initial positions of particles have a significant effect on the particle-lifting properties. The height of particle lifting is found to nonmonotonically depend on the initial streamwise coordinate and shock-wave Mach number. It is shown that zones of aggregation and subtraction of particles may be formed at the cavity bottom. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 1, pp. 24–34, January–February, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号