首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
近年来,一维纳米材料已成为广泛的研究热点.其中,Ⅱ-Ⅵ族掺杂半导体发光材料是一个重要的研究方向.研究者已通过不同的方法合成ZnS或CdS基掺杂纳米发光材料,以期得到基质与发光中心之间有效的能量传递,以及控制基质本身的缺陷发光.溶剂热便是其中一种较新的合成方法,通过它可以在相对温和的反应条件下得到均一的、结晶度较高的产品,在硫化物纳米发光材料的合成方面具有一定的优势.本文以乙二胺为溶剂,采用溶剂热方法制备出CdS︰Mn纳米棒,并系统研究了反应温度、硫镉比和反应时间对CdS︰Mn纳米晶的结晶度和发光性质的影响.(1)反应温度的影响.当[Cd(CH3COO)2]=0.0278mol·L-1,[TAA](硫代乙酰胺)=0.0556mol·L-1,[Mn(CH3COO)2]=0.000278mol·L-1时,分别在130,190,220,230,250℃恒温反应10h.随着反应温度的升高,CdS︰Mn纳米晶的结晶度逐渐提高.因为Mn2+掺杂进入CdS晶格,CdS纳米棒沿[001]晶向的生长优势逐步减弱并最终消失.在130~220℃之间,样品的发光强度变化不大.在220℃以上,样品的发光强度随反应温度的升高而迅速降低.(2)硫镉比的影响.当[Cd(CH3COO)2]=0.0278mol·L-1,[Mn(CH3COO)2]=0.000278mol·L-1时,改变TAA的浓度,分别采用0.5︰1,1︰1,1.5︰1,2︰1的硫镉摩尔比,在130℃恒温反应10h.发现随着硫镉比的提高,CdS︰Mn纳米晶的结晶度逐渐提高.当反应物中硫过量时,晶格缺陷以及表面悬空键数量降低,产品的发光强度随硫镉比升高而逐步提高.(3)反应时间的影响.当[Cd(CH3COO)2]=0.0278mol·L-1,[TAA]=0.0556mol·L-1,[Mn(CH3COO)2]=0.000278mol·L-1时,分别在130℃恒温反应1.5,2.5,4,6,10h.当反应时间少于4h时,CdS︰Mn纳米晶的结晶度迅速提高;而在4~10h之间,产品的结晶度变化不大.TEM图像显示了CdS︰Mn纳米棒的形成过程,只有当反应时间达到4h以上时,才能得到棒状产品.随着反应时间的延长,产品的发光强度先急剧降低,而后略微升高,这可能与纳米棒形成过程中产生的大量表面态有关.通过发光性质的研究,发现CdS基质的缺陷发光得到很好的抑制,产品在室温下即具有绝对优势的Mn2+发光(593nm),归于Mn2+的d-d(4T1-6A1)跃迁.激发光谱表明,本文所讨论的样品均显示出CdS基质的宽吸收,CdS基质与发光中心Mn2+之间存在有效的能量传递.综合考虑产品的形状与发光性质,当采用2︰1的硫镉比,不需要任何其他添加剂,在130℃反应10h制得Mn2+掺杂浓度为1%的CdS纳米棒,其在593nm附近的发光强度较强.CdS︰Mn纳米棒在纳米尺度电子和光子设备中具有潜在的应用价值.  相似文献   

2.
离子交换膜中CdS单分散纳米晶的合成及其光学性质   总被引:5,自引:0,他引:5  
王世铭  刘平  付贤智 《物理化学学报》2005,21(10):1151-1155
以硫代乙酰胺(TAA)为前驱体, 采用液相反应在全氟磺酸离子交换膜(Nafion)中自组装得到了均匀分布、单分散的纳米CdS晶体;与文献报道的前驱体如Na2S和H2S不同, TAA可以在全氟磺酸离子膜中均匀扩散, 最终在Nafion薄膜中得到均匀分布的纳米CdS晶体. 利用高分辨电子显微镜(HRTEM)、X射线衍射仪(XRD)和能量散射X射线分析(EDXA)研究了Nafion薄膜模板中CdS纳米晶体的形成机理、晶粒大小和分布;采用紫外- 可见吸收光谱和荧光光谱分析了Nafion薄膜中单分散纳米CdS晶体的光学性质. 结果表明, 随CdS纳米晶体尺寸的减小, 量子尺寸效应明显增强;在紫外吸收谱中表现为吸收边明显蓝移, 而在光致发光谱中, 表现为带边发射的蓝移.  相似文献   

3.
采用射频等离子体增强化学气相沉积(RF-PECVD)法在低温、低功率的条件下制备了一系列本征硅薄膜, 研究了硅烷浓度(CS)对薄膜微结构、光电特性及表面钝化性能的影响. 将本征硅薄膜作为钝化层应用到氢化纳米晶硅/晶硅(nc-Si:H/c-Si)硅异质结(SHJ)太阳电池中, 研究了硅烷浓度和薄膜厚度对电池性能的影响. 实验发现: 随着硅烷浓度的降低, 本征硅薄膜的晶化率、氢含量、结构因子、光学带隙和光敏性等都在过渡区急剧变化; 本征硅薄膜的钝化性能由薄膜的氢含量及氢的成键方式决定. 靠近过渡区的薄膜具有较好的致密性和光敏性, 氢含量最高, 带隙态密度低, 且主要以SiH 形式成键, 对硅片表现出优异的钝化性能, 使电池的开路电压大幅提高. 但是, 当薄膜的厚度过小时, 会严重影响其钝化质量. 本实验中, 沉积本征硅薄膜的最优硅烷浓度为6% (摩尔分数), 且当薄膜厚度为~8 nm时, 所制备电池的性能最好. 实验最终获得了开路电压为672 mV, 短路电流密度为35.1 mA·cm-2, 填充因子为0.73, 效率为17.3%的nc-Si:H/c-Si SHJ太阳电池  相似文献   

4.
以十八胺为表面修饰剂,硬脂酸镉和硫脲为前驱物,在甲苯-乙二醇两相界面处合成了CdS纳米粒子.研究了反应时间、前驱物浓度、前驱物和表面修饰剂摩尔比等因素对合成CdS纳米粒子的影响.采用紫外-可见吸收光谱、荧光光谱、透射电子显微镜(TEM)和广角X射线衍射(WAXD)等方法对CdS纳米粒子的光学性质、形貌及晶体结构进行了表...  相似文献   

5.
采用溶胶-凝胶法(Sol-Gel)和旋涂法制备了未掺杂的ZnSnO3薄膜和掺入不同物质的量的Sb的ZnSnO3薄膜。采用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、X射线光电子能谱(XPS)、霍尔效应仪(Hall)以及紫外-可见光(UV-Vis)等表征了热处理后薄膜的晶相、微观形貌、晶格缺陷、电学性能以及紫外-可见光透过率。结果表明:所有薄膜都是ZnSnO3结构;与未掺Sb的ZnSnO3薄膜相比,掺入Sb后的ZnSnO3薄膜的电阻率都有不同程度的降低,其中掺入8mol%Sb的薄膜具有最低的电阻率0.96Ω·cm;缺陷研究表明:Sb的掺入使得晶格中的间隙锌离子含量增加,这有利于薄膜电阻率的降低;薄膜的紫外-可见光(UV-Vis)表明:在波长大于475 nm的可见光范围内,掺入Sb的ZnSnO3薄膜的可见光透过率都在80%以上。  相似文献   

6.
本文利用一种绿色合成工艺,采用巯基乙酸作为配体,在水溶液中成功合成了水溶性的Cu∶CdS纳米晶。利用X射线衍射分析(XRD)、傅里叶变换红外光谱(FT-IR)、场发射扫描电镜显微分析(FE-SEM)、能量色散X射线谱(EDX)、紫外可见(UV-Vis)吸收光谱对样品的晶体学性质、结构、形貌、成分、吸收光谱性质进行了系统的研究。着重研究了掺杂浓度对Cu∶CdS纳米晶的晶体学性质及吸收光谱的影响。结果表明:合成的Cu∶CdS纳米晶为立方相,通过谢乐公式估算的平均晶粒尺寸约为2 nm;随着掺杂浓度的增加,产物的晶胞参数也逐渐增大,表明Cu离子已经掺入到CdS纳米晶中,该发现与EDX结果相吻合。FT-IR红外光谱发现,配体巯基乙酸成功包覆在纳米晶的表面。UV-vis吸收谱表明,掺杂后的Cu∶CdS纳米晶的吸收峰向长波长方向移动。这种红移主要是Cu离子在CdS纳米晶中的掺杂而形成电子能级跃迁所致。  相似文献   

7.
采用溶胶法制备出TiO2、SO42-/TiO2、CdS/TiO2薄膜光催化剂,研究了TiO2薄膜光催化还原Hg2+的最佳实验条件以及SO42-/TiO2、CdS/TiO2薄膜与TiO2薄膜、TiO2粉体与薄膜之间的光催化活性差异.结果表明:当pH=5.34时,经30 min紫外光照射,Hg2+的还原率达到最大;Hg2+初始浓度越高,光致还原量越低;光源波长越短,Hg2+的还原率越高;当甲醇添加量达到15%(体积比)时,反应30 min后,Hg2+的还原率即达100%;CdS改性薄膜的光催化活性高于未改性薄膜;CdS/TiO2薄膜的光催化活性略高于粉体.  相似文献   

8.
采用Sol-Gel工艺在玻璃基片上制备出C轴择优取向性、高可见光透过率以及高电导率的Al3+离子掺杂的ZnO透明导电薄膜ZnO:Al(ZAO薄膜).并研究了退火温度、Al掺杂量等对其光电性能的影响.结果表明,溶胶-凝胶法制备ZAO薄膜的最佳工艺条件为:溶胶浓度0.75 mol/L、掺杂量1.5 atm%,镀膜层数10层(厚度约为136 nm)、退火温度600℃.  相似文献   

9.
ZnSnO3透明导电薄膜:溶胶-凝胶法制备及性能   总被引:1,自引:1,他引:0  
采用溶胶-凝胶(Sol-Gel)过程和旋涂法制备了Zn-Sn-O系统薄膜。通过对干凝胶的热重-差示扫描同步热分析(TG-DSC),研究了干凝胶在烧结过程中的反应历程。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、场发射扫描电镜(FE-SEM)以及紫外-可见透过率(UV-Vis)等表征了烧结后薄膜的晶相、晶格缺陷、微观形貌以及紫外-可见光透过率。本文还研究了烧结温度、N2气氛热处理以及组成变化对薄膜电阻率的影响,结果表明:偏锡酸锌ZnSnO3晶体薄膜具有较低的电阻率;当nZn/(nZn+nSn)=50.3at%时,薄膜的电阻率达极小值,约为8.0×102Ω.cm。偏锡酸锌ZnSnO3晶体的导电机理研究表明:晶格中间隙阳离子含量的增加有利于薄膜电阻率的降低,而氧空位的形成则使其电阻率升高。薄膜的紫外-可见光透过率(UV-Vis)表明:偏锡酸锌ZnSnO3晶体薄膜在400~900 nm的可见光波段透过率可达80%以上。  相似文献   

10.
林毅  陈奇  宋鹂  侯凤珍  陆剑英 《化学学报》2006,64(19):2015-2019
以聚苯胺和掺锑的氧化锡作为主要原料, 采用溶胶-凝胶法制备了新型有机-无机杂化透明导电薄膜. 薄膜的可见光透过率为85%以上, 电导率达到100~101 S•cm-1. 研究了聚苯胺含量的变化对浸涂液粘度、薄膜结构、光透过率、电导率的影响. 随着聚苯胺引入量的增加, 薄膜的电导率、可见光透过率均有所增大. 浸涂液的粘度可在长达25天的时间内保持稳定, 很适于浸涂工艺. 扫描电镜照片显示, 薄膜比较致密、均匀, 厚度为250 nm左右.  相似文献   

11.
Sol–gel spin-coating was used to grow zinc oxide (ZnO) thin films doped with 0–2.5 at.% B on quartz substrates. The structural, optical, and electrical properties of the thin films were investigated using field-emission scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), ultraviolet–visible spectroscopy, and van der Pauw Hall-effect measurements. All the thin films had deposited well onto the quartz substrates and exhibited granular morphology. The average crystallite size, lattice constants, residual stress, and lengths of the bonds in the crystal lattice of the thin films were calculated from the XRD data. The PL spectra showed near-band-edge (NBE) and deep-level emissions, and B doping varied the PL properties and increased the efficiency of the NBE emission. The optical transmittance spectra for the undoped ZnO and boron-doped zinc oxide (BZO) thin films show that the optical transmittance of the BZO thin films was significantly higher than that of the undoped ZnO thin films in the visible region of the spectra and that the absorption edge of the BZO thin films was blue-shifted. In addition, doping the ZnO thin films with B significantly varied the absorption coefficient, optical band gap, Urbach energy, refractive index, extinction coefficient, single-oscillator energy, dispersion energy, average oscillator strength, average oscillator wavelength, dielectric constant, and optical conductivity of the BZO thin films. The Hall-effect data suggested that B doping also improved the electrical properties such as the carrier concentration, mobility, and resistivity of the thin films.  相似文献   

12.
《印度化学会志》2023,100(1):100857
Recently, the use of CZTS as the basis for other generation of low cost thin films solar cells has stimulated further researches. Its excellent p-type absorber nature, relatively high absorption coefficient and ideal energy band-gap of 1.5eV motivated these efforts. Additionally, CZTS consist of earth-abundant, cheap and non-toxic elements with very low manufacturing cost. Initially, copper indium gallium selenide (CIGS) solar cell device emerged but suffered limitations in further development because of rare indium and gallium in the device structure therefore, CZTS is recently preferred as an alternative to CIGS commercial solar cell absorber layer. In this work, solution mixture of CZTS and PVA was deposited on a substrate at temperature of 150 °C. Sensitive spray pyrolysis was used to grow the thin films where calculated amount of the precursor mixture was allowed to fall and be deposited on a heated substrate to form CZTS/PVA thin films. Subsequently, the thin film samples were annealed at a temperature of 200oCfor 1 h to achieving pure crystalline thin film formation. SEM, XRD analysis, Optical, Solid State properties and Raman analysis were studied. The XRD analysis showed that the thin films fell into the pure kesterite structure of CZTS. Results show that produced thin films exhibited higher absorption coefficient and optical conductivity than pure CZTS, 106 m?1 and 1014(S?1) against 104cm?1 and 1012(S?1) respectively. The band-gap is between 1.53eV and 1.73eV. Using a PVA concentration of 0.05 M yielded highest absorbance and optical conductivity with lowest real dielectric constant and transmittance. These improved optical, electrical and solid state properties suitably qualify these thin films as absorber layer material for solar cell applications.  相似文献   

13.
The microstructure, optical, photoluminescence and electrical properties of ZnO based films deposited onto FTO glass substrates by ultrasonic spray pyrolysis have been investigated. For comparison and a better understanding of physical properties of indium- and aluminum-doped ZnO and undoped ZnO thin films, X-ray diffraction analysis, photoluminescence spectra, optical, SEM texture and electrical conductivity analyses were performed. The AZO and IZO films exhibit the nanofiber structure with diameters 260 and 400 nm. X-ray diffraction showed all samples to be polycrystalline with hexagonal ZnO. The optical band gaps of the films were varied by Al and In dopants. The photoluminescence spectra of the films show a weak broad in the visible range and shifted to green emission for indium doping and to the green blue emission for aluminum as dopant. The width of the PL spectra for aluminum-doped films is too large compared to those of the indium-doped ones. The electrical conductivity of the ZnO film changes with Al and In dopants. The position of donor levels changes with In and Al dopants and approaches the conduction band level with the metal dopants. The obtained results suggest that the metal doping has a clear effect upon the growth, optical, photoluminescence and electrical conductivity properties of the ZnO films.  相似文献   

14.
In recent years, In2S3 is considered as a promising buffer layer in the fabrication of heterojunction solar cells. Film thickness is one of the important parameters that alters the physical characteristics of the grown layers significantly. The effect of film thickness on the structural, morphological, optical and electrical properties of close space evaporated In2S3 layers has been studied. In2S3 thin films with different thicknesses in the range, 100–700 nm were deposited on Corning glass substrates at a constant substrate temperature of 300 °C. The films were polycrystalline exhibiting strong crystallographic orientation along the (103) plane. The deposited films showed mixed phases of both cubic and tetragonal structures up to a thickness of 300 nm. On further increasing the film thickness, the layers showed only tetragonal phase. With increase of film thickness, both the crystallite size and surface roughness in the films were found to be increased. The optical constants such as refractive index and extinction coefficient of the as-grown layers have been calculated from the optical transmittance data in the wavelength range, 300–2500 nm. The optical transmittance of the films was decreased from 82% to 64% and the band gap varied in the range, 2.65–2.31 eV with increase of film thickness. The electrical resistivity as well as the activation energy was evaluated and found to decrease with film thickness. The detailed study of these results was presented and discussed.  相似文献   

15.
Alloy thin films of CuIn(S0.4Se0.6)2 material were deposited using the solution growth technique. The various deposition parameters such as pH of solution, time, concentration of ions and temperature have been optimized for the device grade thin films. The as-deposited films were annealed in a rapid thermal annealing (RTA) system at 450 °C in air for 5 min and subjected to high-energy Ag ion irradiations. Ag ion irradiation has been performed with an energy of 100 MeV at a fluency of 5×1012 ions/cm2 on the thin film. The changes in optical and electrical properties that occurred before and after post-deposition treatments in CuIn(S0.4Se0.6)2 thin films were studied using X-ray diffraction (XRD) and AFM; increase in crystallinity was observed after annealing and irradiation. In addition, structural damages were observed in irradiated thin films. After annealing and irradiation, the surface roughness was seen to be increased. Decrease in resistivity was observed, which is consistent with the optical energy band gap. The results are explained by considering the high energy deposited due to the electronic energy loss upon irradiation, which modified the properties of the material.  相似文献   

16.
The vanadium dioxide (VO2) thin films were deposited on silicon (100) substrate using the pulsed laser deposition technique. The thin films were deposited at different substrate temperatures (500°C, 600°C, 700°C, and 800°C) while keeping all the other parameters constant. X‐ray diffraction confirmed the crystalline VO2 (B) and VO2 (M) phase formation at different substrate temperatures. X‐ray photoelectron spectroscopy analysis showed the presence of V4+ and V5+ charge states in all the deposited thin films which confirms that the deposited films mainly consist of VO2 and V2O5. An increase in the VO2/V2O5 ratio has been observed in the films deposited at higher substrate temperatures (700°C and 800°C). Scanning electron microscope micrographs revealed different surface morphologies of the thin films deposited at different substrate temperatures. The electrical properties showed the sharp semiconductor to metal transition behavior with approximately 2 orders of magnitude for the VO2 thin film deposited at 800°C. The transition temperature for heating and cooling cycles as low as 46.2°C and 42°C, respectively, has been observed which is related to the smaller difference in the interplanar spacing between the as‐deposited thin film and the standard rutile VO2 as well as to the lattice strain of approximately −1.2%.  相似文献   

17.
Summary: Titanyl phthalocyanine (TiOPc) thin films were prepared using evaporation and surface polymerization by ion-assisted deposition (SPIAD) in a vacuum deposition system. These films were characterized by means of ultraviolet and X-ray photoelectron spectroscopy as well as UV/Vis absorption spectroscopy. Valence band and elemental content indicated that phthalocyanine electronic and chemical structures were largely preserved during SPIAD. Further, bilayer thin films of titania (TiO2) and SPIAD TiOPc were prepared. TiO2 film was deposited by reactive magnetron sputtering of TiO2 target. Study of the structured samples was focused on the optical and electrical properties of the composite films. The films were characterized by non-contact photovoltage measurements and UV-Vis spectroscopy. These results suggest there is a possibility to use these bilayer thin films in photovoltaic solar cells, however further experiments to improve conductivity of the films will be required.  相似文献   

18.
This paper reports on the preparation, characterization, electrical and optical properties of tin oxide (SnO2) thin films doped indium prepared by the sol–gel method and deposited on glass substrates with dip coating technique. X-ray diffraction patterns showed an increase in the crystallinity of the films with increase in annealing temperatures. Atomic force microscopy analyses revealed an increase of grain growth with raise in annealing temperature. The film surface revealed positive skewness and kurtosis values less than 3 which make them favorable for OLEDs applications. The lowest resistivity (about 10?7) was obtained for the ITO films annealed at 500 °C. These films acquire n-type conductivity due to the non-stoichiometric in the films like (interstitial tin atoms) and also due to low indium doping concentration. The optical properties of the films have been studied from transmission spectra. An average transmittance of >80 % in ultraviolet–visible region was observed for all the films. Optical band gap energy (E gap) of ITO films was found to vary in the range of 3.69–3.81 eV with the increase in annealing temperature. This slight shift of E gap to higher photon energies could be related to the crystalline nature of the films associated with the decrease in the defect concentration caused by annealing. Photoluminescence spectra of the films exhibited an increase in the emission intensity with increase in annealing temperature. The high temperature annealing would be expected to decrease the density of defects, improve the crystal orientation and reduce the traps for non-radiative transition and also increase the oxidation processes.  相似文献   

19.
Aluminum doped zinc oxide (AZO) thin films for electrode applications were deposited on glass substrates using chemical bath deposition (CBD) method. The influence of deposition time on the structural, morphological, and opto-electrical properties of AZO films were investigated. Structural studies confirmed that all the deposited films were hexagonal wurtzite structure with polycrystalline nature and exhibited (002) preferential orientation. There is no other impurity phases were detected for different deposition time. Surface morphological images shows the spherically shaped grains are uniformly arranged on to the entire film surface. The EDS spectrum confirms the presence of Zn, O and Al elements in deposited AZO film. The observed optical transmittance is high (87%) in the visible region, and the calculated band gap value is 3.27 eV. In this study, the transmittance value is decreased with increasing deposition time. The room temperature PL spectrum exposed that AZO thin film deposited at (60 min) has good optical quality with less defect density. The minimum electrical resistivity and maximum carrier concentration values were observed as 8.53 × 10−3(Ω cm) and 3.53 × 1018 cm−3 for 60 min deposited film, respectively. The obtained figure of merit (ϕ) value 3.05 × 10−3(Ω/sq)- 1 is suggested for an optoelectronic device.  相似文献   

20.
In the present article, we have studied the effect of post annealing treatment on microstructural, optical and photoelectrochemical (PEC) properties of MoBi2S5 thin films synthesized by microwave assisted technique. The synthesized thin films are vacuum annealed for 4 h at 473 K temperature. The X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) and UV–Vis–NIR spectrophotometer techniques were used for characterization of the as deposited and annealed MoBi2S5 thin films. The XRD patterns confirm the synthesized and annealed thin films have nanocrystalline nature with rhombohedral-orthorhombic crystal structure. SEM micrographs indicate that, nanoflowers exhibit sharper end after annealing. The optical absorption study illustrates that the optical band gap energy has been decrease from 2.0 eV to 1.75 eV with annealing. Finally, applicability of synthesized thin films has been checked for PEC property. The J-V curves revealed that synthesized thin film photoanodes are suitable for PEC cell application. As well, used simple, economical method has great potential for synthesis of various thin film materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号