首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, Todd has analyzed in detail the primal-dual affine-scaling method for linear programming, which is close to what is implemented in practice, and proved that it may take at leastn 1/3 iterations to improve the initial duality gap by a constant factor. He also showed that this lower bound holds for some polynomial variants of primal-dual interior-point methods, which restrict all iterates to certain neighborhoods of the central path. In this paper, we further extend his result to long-step primal-dual variants that restrict the iterates to a wider neighborhood. This neigh-borhood seems the least restrictive one to guarantee polynomiality for primal-dual path-following methods, and the variants are also even closer to what is implemented in practice.Research supported in part by NSF, AFOSR and ONR through NSF Grant DMS-8920550.This author is supported in part by NSF Grant DDM-9207347. Part of thiw work was done while the author was on a sabbatical leave from the University of Iowa and visiting the Cornell Theory Center, Cornell University, Ithaca, NY 14853, supported in part by the Cornell Center for Applied Mathematics and by the Advanced Computing Research Institute, a unit of the Cornell Theory Center, which receives major funding from the National Science Foundation and IBM Corporation, with additional support from New York State and members of its Corporate Research Institute.  相似文献   

2.
On homogeneous and self-dual algorithms for LCP   总被引:3,自引:0,他引:3  
We present some generalizations of a homogeneous and self-dual linear programming (LP) algorithm to solving the monotone linear complementarity problem (LCP). Again, while it achieves the best known interior-point iteration complexity, the algorithm does not need to use any “big-M” number, and it detects LCP infeasibility by generating a certificate. To our knowledge, this is the first interior-point and infeasible-starting algorithm for the LCP with these desired features. Research supported in part by NSF Grant DDM-9207347, the University of Iowa Oberman Fellowship and the Iowa College of Business Administration Summer Grant. Part of this work is done while the author is visiting the Delft Optimization Center at the University of Technology, Delft, Netherlands, supported by the Dutch Organization for Scientific Research (NWO).  相似文献   

3.
Recently, Ye, Tapia and Zhang (1991) demonstrated that Mizuno—Todd—Ye's predictor—corrector interior-point algorithm for linear programming maintains the O( L)-iteration complexity while exhibiting superlinear convergence of the duality gap to zero under the assumption that the iteration sequence converges, and quadratic convergence of the duality gap to zero under the assumption of nondegeneracy. In this paper we establish the quadratic convergence result without any assumption concerning the convergence of the iteration sequence or nondegeneracy. This surprising result, to our knowledge, is the first instance of a demonstration of polynomiality and superlinear (or quadratic) convergence for an interior-point algorithm which does not assume the convergence of the iteration sequence or nondegeneracy.Supported in part by NSF Grant DDM-8922636 and NSF Coop. Agr. No. CCR-8809615, the Iowa Business School Summer Grant, and the Interdisciplinary Research Grant of the University of Iowa Center for Advanced Studies.Supported in part by NSF Coop. Agr. No. CCR-8809615, AFOSR 89-0363, DOE DEFG05-86ER25017 and ARO 9DAAL03-90-G-0093.Supported in part by NSF Grant DMS-9102761 and DOE Grant DE-FG05-91ER25100.  相似文献   

4.
We propose a sufficient condition that allows an optimal basis to be identified from a central path point in a linear programming problem. This condition can be applied when there is a gap in the sorted list of slack values. Unlike previously known conditions, this condition is valid for real-number data and does not involve the number of bits in the data.This work is supported in part by the National Science Foundation, the Air Force Office of Scientific Research, and the Office of Naval Research, through NSF Grant DMS-8920550. Also supported in part by an NSF Presidential Young Investigator Award with matching funds received from AT&T and the Xerox Corporation. Part of this work was carried out while the author was visiting the Sandia National Laboratories, supported by the U.S. Department of Energy under Contract DE-AC04-76DP00789.The author is supported in part by NSF Grant DDM-9207347. Part of this work was carried out while the author was on a sabbatical leave from the University of Iowa and visiting the Cornell Theory Center, Cornell University, Ithaca, NY 14853, supported in part by the Cornell Center for Applied Mathematics and by the Advanced Computing Research Institute, a unit of the Cornell Theory Center, which receives major funding from the National Science Foundation and the IBM Corporation, with additional support from New York State and members of its Corporate Research Institute.  相似文献   

5.
It has been shown [8] that numerous interior-point algorithms for linear programming (LP) generate solution sequences that converge to strict complementarity solutions, or interior solutions on the optimal face. In this note we further establish a theoretical base for Gay's test (Gay, 1989) to identify the optimal face, and develop a new termination procedure to obtain an exact solution on the optimal face. We also report some numerical results for solving a set of LP test problems, each of which has a highly degenerate and unbounded optimal face.Research supported in part by NSF Grant DDM-8922636, The Iowa Business School Summer Grant, and the Interdisciplinary Research Grant of the University of Iowa Center for Advanced Studies.  相似文献   

6.
Recently several new results have been developed for the asymptotic (local) convergence of polynomial-time interior-point algorithms. It has been shown that the predictor—corrector algorithm for linear programming (LP) exhibits asymptotic quadratic convergence of the primal—dual gap to zero, without any assumptions concerning nondegeneracy, or the convergence of the iteration sequence. In this paper we prove a similar result for the monotone linear complementarity problem (LCP), assuming only that a strictly complementary solution exists. We also show by example that the existence of a strictly complementarity solution appears to be necessary to achieve superlinear convergence for the algorithm.Research supported in part by NSF Grants DDM-8922636 and DDM-9207347, and an Interdisciplinary Research Grant of the University of Iowa, Iowa Center for Advanced Studies.  相似文献   

7.
Summary We show that for a -mixing stationary sequence of bounded random variables, the average of the firstn variables converges exponentially fast withn to the mean value of these random variables.Work supported by the U.S. Army Research Office through the Mathematical Sciences Institute at Cornell and a NSF Grant to Cornell University  相似文献   

8.
We describe a new potential function and a sequence of ellipsoids in the path-following algorithm for convex quadratic programming. Each ellipsoid in the sequence contains all of the optimal primal and dual slack vectors. Furthermore, the volumes of the ellipsoids shrink at the ratio , in comparison to 2(1) in Karmarkar's algorithm and 2(1/n) in the ellipsoid method. We also show how to use these ellipsoids to identify the optimal basis in the course of the algorithm for linear programming.Research supported by The U.S. Army Research Office through The Mathematical Sciences Institute of Cornell University when the author was visiting at Cornell.Research supported in part by National Science Foundation Grant ECS-8602534 and Office of Naval Research Contract N00014-87-K-0212.  相似文献   

9.
We describe a cutting plane algorithm for solving combinatorial optimization problems. The primal projective standard-form variant of Karmarkar's algorithm for linear programming is applied to the duals of a sequence of linear programming relaxations of the combinatorial optimization problem.Computational facilities provided by the Cornell Computational Optimization Project supported by NSF Grant DMS-8706133 and by the Cornell National Supercomputer Facility. The Cornell National Supercomputer Facility is a resource of the Center for Theory and Simulation in Science and Engineering at Cornell Unversity, which is funded in part by the National Science Foundation, New York State, and the IBM Corporation. The research of both authors was partially supported by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University.Research partially supported by ONR Grant N00014-90-J-1714.Research partially supported by NSF Grant ECS-8602534 and by ONR Contract N00014-87-K-0212.  相似文献   

10.
We study primal-dual interior-point methods for linear programs. After proposing a new primaldual potential function we describe a new potential reduction algorithm. We make connections between the new potential function and primal-dual interior-point algorithms with wide neighborhoods. Then we describe an algorithm that is a slightly modified version of existing primal-dual algorithms using wide neighborhoods. Assuming the optimal solution is non-degenerate, the algorithm is 1-step Q-quadratically convergent. We also study the degenerate case and show that the neighborhoods of the central path stay large as the iterates approach the optimal solutions.Research performed while the author was a Ph.D. student at Cornell University and was supported in part by the United States Army Research Office through the Army Center of Excellence for Symbolic Methods in Algorithmic Mathematics (ACSyAM), Mathematical Sciences Institute of Cornell University, Contract DAAL03-91-C-0027 and also by NSF, AFOSR and ONR through NSF Grant DMS-8920550.  相似文献   

11.
Convergence behavior of interior-point algorithms   总被引:4,自引:0,他引:4  
We show that most interior-point algorithms for linear programming generate a solution sequence in which every limit point satisfies the strict complementarity condition. These algorithms include all path-following algorithms and some potential reduction algorithms. The result also holds for the monotone complementarity problem if a strict complementarity solution exists. In general, the limit point is a solution that maximizes the number of its nonzero components among all solutions.Research supported in part by NSF Grant DDM-8922636, the Iowa Business School Summer Grant, and the Interdisciplinary Research Grant of the University of Iowa Center for Advanced Studies.  相似文献   

12.
The layered-step interior-point algorithm was introduced by Vavasis and Ye. The algorithm accelerates the path following interior-point algorithm and its arithmetic complexity depends only on the coefficient matrixA. The main drawback of the algorithm is the use of an unknown big constant in computing the search direction and to initiate the algorithm. We propose a modified layered-step interior-point algorithm which does not use the big constant in computing the search direction. The constant is required only for initialization when a well-centered feasible solution is not available, and it is not required if an upper bound on the norm of a primal—dual optimal solution is known in advance. The complexity of the simplified algorithm is the same as that of Vavasis and Ye. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.Research supported in part by ONR contract N00014-94-C-0007 and the Grant-in-Aid for Scientific Research (C) 08680478 and the Grant-in-Aid for Encouragement of Young Scientists (A) 08780227 of the Ministry of Science, Education and Culture of Japan. This research was partially done while S. Mizuno and T. Tsuchiya were visiting IBM Almaden Research Center in the summer of 1995.  相似文献   

13.
We consider a new algorithm, an interior-reflective Newton approach, for the problem of minimizing a smooth nonlinear function of many variables, subject to upper and/or lower bounds on some of the variables. This approach generatesstrictly feasible iterates by using a new affine scaling transformation and following piecewise linear paths (reflection paths). The interior-reflective approach does not require identification of an activity set. In this paper we establish that the interior-reflective Newton approach is globally and quadratically convergent. Moreover, we develop a specific example of interior-reflective Newton methods which can be used for large-scale and sparse problems.Research partially supported by the Applied Mathematical Sciences Research Program (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-86ER25013.A000, and in part by NSF, AFOSR, and ONR through grant DMS-8920550, and by the Advanced Computing Research Institute, a unit of the Cornell Theory Center which receives major funding from the National Science Foundation and IBM Corporation, with additional support from New York State and members of its Corporate Research Institute.Corresponding author.  相似文献   

14.
A specialization of the dual simplex method is developed for solving the linear programming (LP) knapsack problem subject to generalized upper bound (GUB) constraints. The LP/GUB knapsack problem is of interest both for solving more general LP problems by the dual simplex method, and for applying surrogate constraint strategies to the solution of 0–1 Multiple Choice integer programming problems. We provide computational bounds for our method of o(n logn), wheren is the total number of problem variables. These bounds reduce the previous best estimate of the order of complexity of the LP/GUB knapsack problem (due to Witzgall) and provide connections to computational bounds for the ordinary knapsack problem.We further provide a variant of our method which has only slightly inferior worst case bounds, yet which is ideally suited to solving integer multiple choice problems due to its ability to post-optimize while retaining variables otherwise weeded out by convex dominance criteria.  相似文献   

15.
A mean field limit of the contact process with large range   总被引:2,自引:0,他引:2  
Summary A mean field limit of the contact process is obtained as the rangeM approaches . Fluctuations about the deterministic limit are identified as a Generalized Ornstein Uhlenbeck process.Research supported in part by the Army Research Office through the Mathematical Sciences Institute at Cornell University and by NSF Grant: DMS 8902152  相似文献   

16.
We start with a study of the primal—dual affine-scaling algorithms for linear programs. Using ideas from Kojima et al., Mizuno and Nagasawa, and new potential functions we establish a framework for primal—dual algorithms that keep a potential function value fixed. We show that if the potential function used in the algorithm is compatible with a corresponding neighborhood of the central path then the convergence proofs simplify greatly. Our algorithms have the property that all the iterates can be kept in a neighborhood of the central path without using any centering in the search directions.Research performed while the author was Ph.D. student at Cornell University and was supported in part by the United States Army Research Office through the Army Center of Excellence for Symbolic Methods in Algorithmic Mathematics (ACSyAM), Mathematical Sciences Institute of Cornell University, Contract DAAL03-91-C-0027, and also by NSF, AFOSR and ONR through NSF Grant DMS-8920550.  相似文献   

17.
We find conditions for E(W ) to be finite whereW is the stationary waiting time random variable in a stableG/G/1 queue with dependent service and inter-arrival times.Supported in part by KBN under grant 640/2/9, and at the Center for Stochastic Processes, Department of Statistics at the University of North Carolina Chapel Hill by the Air Force Office of Scientific Research Grant No. 91-0030 and the Army Research Office Grant No. DAAL09-92-G-0008.  相似文献   

18.
In this paper we characterize the situation wherein a subspaceS of a separable Hilbert state space is holdable under the abstract linear autonomous control system , whereA is the infinitesimal generator of aC 0-semigroup of operators and whereB is a bounded linear operator mapping a Hilbert space intoX. WhenS D(A*) is dense inS , it is shown that a necessary (but insufficient) condition for holdability is (1): . A stronger condition than (1) is shown to be sufficient for a type of approximate holdability. In the finite dimensional setting, (1) reduces to (A, B)-invariance, which is known to be equivalent to the existence of a (bounded) linear feedback control law which achieves holdability inS. We prove that this equivalence holds in infinite dimensions as well, whenA is bounded and the linear spacesS, B andS+ B are closed.In the unbounded case, our results are illustrated by the shift semigroup and by the heat equation on an infinite rod with distributed controls. In the bounded case, our example is an integro-differential control system.Research sponsored by the National Research Council of Canada under Grant A7271.Research sponsored by the National Research Council of Canada under Grant A4641.  相似文献   

19.
Christofides [1] proposes a heuristic for the traveling salesman problem that runs in polynomial time. He shows that when the graphG = (V, E) is complete and the distance matrix defines a function onV × V that is metric, then the length of the Hamiltonian cycle produced by the heuristic is always smaller than 3/2 times the length of an optimal Hamiltonian cycle. The purpose of this note is to refine Christofides' worst-case analysis by providing a tight bound for everyn 3, wheren is the number of vertices of the graph. We also show that these bounds are still tight when the metric is restricted to rectilinear distances, or to Euclidean distances for alln 6.This work was supported, in part, by NSF Grant ENG 75-00568 to Cornell University. This work was done when the authors were affiliated with the Center for Operations Research and Econometrics, University of Louvain, Belgium.  相似文献   

20.
A new graph triconnectivity algorithm and its parallelization   总被引:1,自引:0,他引:1  
We present a new algorithm for finding the triconnected components of an undirected graph. The algorithm is based on a method of searching graphs called open ear decomposition. A parallel implementation of the algorithm on a CRCW PRAM runs inO(log2 n) parallel time usingO(n+m) processors, wheren is the number of vertices andm is the number of edges in the graph.A preliminary version of this paper was presented at the19th Annual ACM Symposium on Theory of Computing, New York, NY, May 1987.Supported by NSF Grant DCR 8514961.Supported by NSF Grant ECS 8404866 and the Semiconductor Research Corporation Grant 86-12-109.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号