首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report on polaron decay in InAs/GaAs self-assembled quantum dots. The polarons are probed by pump–probe spectroscopy through their optical intersublevel absorption around 62 meV (20 μm wavelength). A T1 polaron lifetime of the order of tens of picosecond is deduced from the low-temperature pump–probe measurements. We show that a long-lived component can be additionally observed on the pump–probe measurements. The spectral dependence of this long-lived component is, however, not correlated to the polaron absorption. It is thus not a signature of polaron relaxation quenching. The origin of this long-lived component is attributed to the two-phonon absorption of the bulk GaAs substrate.  相似文献   

2.
Polaron decay in n-type InAs quantum dots has been investigated using energy dependent, mid-infrared pump–probe spectroscopy. By studying samples with differing ground state to first excited state energy separations the relaxation time has been measured between 40 and 60 meV. The low-temperature decay time increases with increasing detuning between the pump energy and the optical phonon energy and is maximum (55 ps) at 56 meV. From the experimentally determined decay times we are able to extract a low-temperature optical phonon lifetime of 13 ps for InAs QDs. We find that the polaron decay time decreases by a factor of 2 at room temperature due to the reduction of the optical phonon lifetime.  相似文献   

3.
Carrier capture and relaxation in self-assembled InAs/GaAs quantum dots (QDs) have been studied, using bleaching rise time measurements for both the ground state (GS) and the first excited state (ES) transition, as a function of temperature (5, 77 and 293 K) and excitation density. We surprisingly observe that the bleaching rise time is longer for the ES than for the GS, indicating that the ES does not act as an intermediate state. At intermediate excitation density where the carrier relaxation is usually explained by Auger scattering, we still observe a temperature dependence pointing towards a single phonon emission process. For high excitation density, we observe a temperature-dependent plateau in the initial bleaching rise time, contradicting an Auger scattering-based relaxation model. Both these experimental results point towards a relaxation through the continuum background, followed by a single LO-phonon emission towards the QD GS.  相似文献   

4.
An asymmetrically coupled double quantum dot (QD) system consisting of adjacent CdSe and CdZnMnSe QD layers in a ZnSe matrix was investigated using polarization-selective magneto-photoluminescence (PL). Two well-resolved PL peaks are observed corresponding, respectively, to the CdSe and the CdZnMnSe QDs. The peaks exhibit significant change in the intensity and energy position when a magnetic field is applied. The enhancement of the degree of σ circular polarization emitted by the non-magnetic CdSe QDs is observed in the double layer system, as compared to that observed in CdSe QDs without the influence of neighboring CdZnMnSe QDs. This behavior was discussed in terms of antiferromagnetic interaction between carrier spins localized in pairs of CdSe and CdZnMnSe QDs that are electronically coupled.  相似文献   

5.
A four-terminal parallel double quantum dots (QDs) device is proposed to generate and detect the spin polarization in QDs. It is found that the spin accumulation in QDs and the spin-polarized currents in the upper and down leads can be generated when a bias voltage is applied between the left and right leads. It is more interesting that the spin polarization in the QDs can be detected using the upper and down leads. Moreover, the direction and magnitude of the spin polarization in the QDs, and in the upper and down leads can be tuned by the energy levels of QDs and the bias.  相似文献   

6.
Polaron relaxation processes in a series of n-type InAs quantum dots (QDS) have been investigated using energy-dependent far-infrared pump–probe spectroscopy. For energies up to 53 meV, polarons decay to 2 longitudinal acoustic phonons; above this energy additional decay channels open resulting in a reduction of the decay time. Inter-state transfer has been observed between closely spaced p-like excited states, with the measured transfer times in good agreement with calculations assuming acoustic phonon assisted transfer. Finally, for QDs containing 2 electrons we observe evidence of a spin-flip process resulting in long (700 ps) relaxation times.  相似文献   

7.
Properties of excitons confined to potential fluctuations due to indium distribution in the wetting layer which accompany self-assembled InAs/GaAs quantum dots are reviewed. Spectroscopic studies are summarized including time-resolved photoluminescence and corresponding single-photon emission correlation measurements. The identification of charge states of excitons is presented which is based on results of a theoretical analysis of interactions between the involved carriers. The effect of the dots’ environment on their optical spectra is also shown.  相似文献   

8.
Phonon-induced spin relaxation in coupled lateral quantum dots in the presence of spin-orbit coupling is calculated. The calculation for single dots is consistent with experiment. Spin relaxation in double dots at useful interdot couplings is dominated by spin-hot spots that are strongly anisotropic. Spin-hot spots are ineffective for a diagonal crystallographic orientation of the dots with a transverse in-plane field. This geometry is proposed for spin-based quantum information processing.  相似文献   

9.
The pumping of electrons through double quantum dots (DQDs) attached to ferromagnetic leads have been theoretically investigated by using the nonequilibrium Green?s function method. It is found that an oscillating electric field applied to the quantum dot may give rise to the pumped charge and spin currents. In the case that both leads are ferromagnet, a pure spin current can be generated in the antiparallel magnetization configuration, where no net charge current exists. The possibility of manipulating the pumped spin current is explored by tuning the dot level and the ac field. By making use of various tunings, the magnitude and direction of the pumped spin current can be well controlled. For the case that only one lead is ferromagnetic, both of the charge and spin currents can be pumped and flow in opposite directions on the average. The control of the magnitude and direction of the pumped charge and spin currents is also discussed by means of the magnetic flux threading through the DQD ring.  相似文献   

10.
We present the experimental evidence of giant optical anisotropy in single InAs QDs. Polarization-resolved photoluminescence spectroscopy in single QDs reveals a linear polarization ratio which fluctuates, from one dot to another, in sign and in magnitude with absolute values up to 82%. We do not observe any dependence of the linear polarization on incident power and temperature.  相似文献   

11.
A model Hamiltonian is proposed for the localization–delocalization transition in quantum dots. By considering most relevant degrees of freedom, we obtain a finite dimensional Hilbert space. Through exact diagonalization, we find the ground state energies of the system as the number of electrons is varied. This explains the peculiar pattern of the electron addition energies, which are measured as a function of the top and side gate voltages.  相似文献   

12.
In this paper we use a density matrix formalism to model the spin photocurrent obtained from a single self-assembled quantum dot photodiode under the influence of an applied strong polarized electromagnetic pulse and a gate voltage. We show that the degree of polarization of the output photocurrent generated by a circularly polarized pulse in a strongly anisotropic quantum dot can be switched as we increase the pulse intensity. A similar effect is observed in a quantum dot with weak anisotropic electron–hole exchange interaction by using an elliptically polarized pulse. In the latter, a shorter pulse is needed, which creates an effective exchange channel through the biexciton. This phenomenon can be used as a dynamical switch to invert the spin-polarization of the extracted current.  相似文献   

13.
We report on optical orientation of electrons in n-doped InAs/GaAs quantum dots. Under non-resonant cw optical pumping, we measure a negative circular polarization of the luminescence of charged excitons (or trions) at low temperature (T=10 K). The dynamics of the recombination and of the circular polarization is studied by time-resolved spectroscopy. We discuss a simple theoretical model for the trion relaxation, that accounts for this remarkable polarization reversal. The interpretation relies on the bypass of Pauli blocking allowed by the anisotropic electron–hole exchange. Eventually, the spin relaxation time of doping electrons trapped in quantum dots is measured by a non-resonant pump–probe experiment.  相似文献   

14.
We have investigated a series of double-layer structures consisting of a layer of self-assembled non-magnetic CdSe quantum dots (QDs) separated by a thin ZnSe barrier from a ZnCdMnSe diluted magnetic semiconductor (DMSs) quantum well (QW). In the series, the thickness of the ZnSe barrier ranged between 12 and 40 nm. We observe two clearly defined photoluminescence (PL) peaks in all samples, corresponding to the CdSe QDs and the ZnCdMnSe QW, respectively. The PL intensity of the QW peak is observed to decrease systematically relative to the QD peak as the thickness of the ZnSe barrier decreases, indicating a corresponding increase in carrier tunneling from the QW to the QDs. Furthermore, polarization-selective PL measurements reveal that the degree of polarization of the PL emitted by the CdSe QDs increases with decreasing thickness of the ZnSe barriers. The observed behavior is discussed in terms of anti-parallel spin interaction between carriers localized in the non-magnetic QDs and in the magnetic QWs.  相似文献   

15.
Excitonic transitions of single InAs self-assembled quantum dots were directly measured at 4.2 K in an optical transmission experiment. We use the Stark effect in order to tune the exciton energy of a single quantum dot into resonance with a narrow-band laser. With this method, sharp resonances in the transmission spectra are observed. The oscillator strengths as well as the homogeneous line widths of the single-dot optical transitions are obtained. A clear saturation in the absorption is observed at modest laser powers.  相似文献   

16.
蒋洪良  张荣军  周宏明  姚端正  熊贵光 《物理学报》2011,60(1):17204-017204
本文在处理InAs单电子量子点哈密顿模型时,将自旋-轨道(SO)相互作用作为微扰项,计算在Fock-Darwin本征函数下SO相互作用的矩阵元,利用其对能级和波函数的二阶修正,并且考虑新的能级对g因子和有效质量m*的影响,计算得到在声子协助下电子的自旋弛豫率Γ的表达式.给出了InAs量子点中声子协助的电子自旋弛豫率Γ对于限制势频率ω0、温度T、纵向高度z0关键词: 自旋弛豫率 自旋-轨道(SO)相互作用 InAs量子点 Fock-Darwin本征函数  相似文献   

17.
We report on the optical properties of nanoscale InAs quantum dots in a Si matrix. At a growth temperature of 400°C, the deposition of 7 ML InAs leads to the formation of coherent islands with dimensions in the 2–4 nm range with a high sheet density. Samples with such InAs quantum dots show a luminescence band in the 1.3 μm region for temperatures up to 170 K. The PL shows a pronounced blue shift with increasing excitation density and decays with a time constant of 440 ns. The optical properties suggest an indirect type II transition for the InAs/Si quantum dots. The electronic structure of InAs/Si QDs is discussed in view of available band offset information.  相似文献   

18.
We propose a method of operating a quantum state machine made of stacked quantum dots buried in adjacent to the channel of a spin field-effect transistor (FET) [S. Datta, B. Das, Appl. Phys. Lett. 56 (1990) 665; K. Yoh, et al., Proceedings of the 23rd International Conference on Physics of Semiconductors (ICPS) 2004; H. Ohno, K. Yoh et al., Jpn. J. Appl. Phys. 42 (2003) L87; K. Yoh, J. Konda, S. Shiina, N. Nishiguchi, Jpn. J. Appl. Phys. 36 (1997) 4134]. In this method, a spin blockade measurement extracts the quantum state of a nearest quantum dot through Coulomb blockade [K. Yoh, J. Konda, S. Shiina, N. Nishiguchi, Jpn. J. Appl. Phys. 36 (1997) 4134; K. Yoh, H. Kazama, Physica E 7 (2000) 440] of the adjacent channel conductance. Repeated quantum Zeno-like (QZ) measurements [H. Nakazato, et al., Phys. Rev. Lett. 90 (2003) 060401] of the spin blockade is shown to purify the quantum dot states within several repetitions. The growth constraints of the stacked InAs quantum dots are shown to provide an exchange interaction energy in the range of 0.01–1 meV [S. Itoh, et al., Jpn. J. Appl. Phys. 38 (1999) L917; A. Tackeuchi, et al., Jpn. J. Appl. Phys. 42 (2003) 4278]. We have verified that one can reach the fidelity of 90% by repeating the measurement twice, and that of 99.9% by repeating only eleven QZ measurements. Entangled states with two and three vertically stacked dots are achieved with the sampling frequency of the order of 100 MHz.  相似文献   

19.
We investigated the effect of GaNAs strain-compensating layers (SCLs) on the properties of InAs self-assembled quantum dots (QDs) grown on GaAs (0 0 1) substrates. The GaNAs material can be used as SCL thereby minimizing the net strain, and thus is advantageous for multi-stacking of InAs QDs structures and achieving long wavelength emission. The emission wavelength of InAs QDs can be tuned by changing the nitrogen (N) composition in GaNAs SCLs due to both effects of strain compensation and lowering of potential barrier height. A photoluminescence emission at 77 K was clearly observed for sample with GaN0.024As0.976 SCL. Further, we observed an improvement of optical properties of InAs QDs by replacing the more popular GaAs embedding layers with GaNAs SCLs, which is a result of decreasing non-radiative defects owing to minimizing the total net strain.  相似文献   

20.
The aim of this work is to analyze theoretically the correlation energies for neutral, positively, negatively charged exciton and bi-exciton. So, we propose a model consistent with experimental observations that is small InAs truncated pyramids with circular base lying on wetting layer, both buried into GaAs matrix.In a first step and in contrast to other works, we are able to evaluate coulombic interactions between electron and hole, two electrons and two holes by perturbative method at the second order. In a second step, the correlation energies of many-body complexes X, X-, X+ and XX are investigated as a function of quantum dots basis radius rc and the applied electric field.Our main goal is to provide realistic estimation for the correlation energies of excitons, charged excitons and bi-excitons while retaining at the same time a transparent formalism, which could easily be transposed to structures of actual interest.The present work provides evidence of the stability of excitons, charged excitons and bi-excitons in InAs/GaAs quantum dots. Calculated correlation energies of many-body complexes are consistent with those reported by recent photoluminescence measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号