首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel chiral diphosphite ligands derived from glucopyranoside and H8-binaphthol were synthesized, and successfully employed in the Cu-catalyzed asymmetric 1,4-addition of organozinc reagents dimethylzinc, diethylzinc, and diphenylzinc to cyclic and acyclic enones with up to 96% ee. The stereochemically matched combination of d-glucopyranoside backbone and (R)-H8-binaphthyl in the ligand 2,4-bis{[(R)-1,1′-H8-binaphthyl-2,2′-diyl] phosphite}-phenyl 3,6-anhydro-β-d-glucopyranoside was essential for inducing high enantioselectivity. A significant dependence of stereoselectivity on the type of enones and the ring size of cyclic enones was observed. Moreover, the sense of the enantiodiscrimination of the products was mainly determined by the configuration of the H8-binaphthyl moieties.  相似文献   

2.
A novel catalytic system for the hydrogenation of dimethyl itaconate has been developed by using rhodium–diphosphite complexes. These chiral diphosphite ligands were derived from glucopyranoside, d-mannitol derivatives, and binaphthyl or H8-binaphthyl phosphochloridites. The ligands based on the methyl 3,6-anhydro-α-d-glucopyranoside backbone and (R)- and (S)-binaphthol and/or (R)- and (S)-2,2′-dihydroxy-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthol gave almost complete conversion of the dimethyl itaconate and both enantiomers of dimethyl 2-methylsuccinate with excellent enantioselectivities. The stereochemically matched combination of methyl 3,6-anhydro-α-d-glucopyranoside and H8-(S)-binaphthyl in ligand 2,4-bis{[(S)-1,1′-H8-binaphthyl-2,2′-diyl]-phosphite} methyl 3,6-anhydro-α-d-glucopyranoside was essential to afford dimethyl 2-methylsuccinate with up to 98% ee. The sense of the enantioselectivity of products was predominantly determined by the configuration of the biaryl moieties of the ligands. An initial screening of [Rh(cod)2]BF4 with these ligands in the hydrogenation of (E)-2-(3-butoxy-4-methoxybenzylidene)-3-methylbutanoic acid was carried out. Good enantioselectivity (75% ee) and low yield for (R)-2-(3-butoxy-4-methoxybenzyl)-3-methylbutanoic acid were obtained.  相似文献   

3.
A series of novel chiral diphosphite ligands have been synthesized from d-mannitol derivatives and chlorophosphoric acid diary ester, and were successfully employed in the copper catalyzed enantioselective conjugate addition of organozinc reagents diethylzinc and dimethylzinc to cyclic and acyclic enones. The stereochemically matched combination of d-mannitol and (R)-H8-binaphthyl in ligand 1,2:5,6-di-O-isopropylidene-3,4-bis[(R)-1,1′-H8-binaphthyl-2,2′-diyl] phosphite-d-mannitol was essential to afford 93% ee for 3-ethylcyclohexanone, 92% ee for 3-ethylcyclopentanone, and 90% ee for 3-ethylcycloheptanone in toluene, using Cu(OTf)2 as a catalytic precursor. The results clearly indicated that the chiral organocopper reagent exhibited high enantioselectivies for cyclic enones bearing different ring sizes. As for the backbone of this type of ligand, it has been demonstrated that 1,2:5,6-di-O-isopropylidene-d-mannitol was more efficient than 1,2:5,6-di-O-cyclohexylidene-d-mannitol. The sense of the enantiodiscrimination was mainly determined by the configuration of the diaryl phosphite moieties in the 1,4-addition of cyclic enones.  相似文献   

4.
A chiral bidentate phosphoramidite (5a) was synthesized from Shibasaki’s linked-(R)-BINOL and P(NMe2)3 as a new ligand for rhodium(I)-catalyzed asymmetric 1,4-addition of arylboronic acids to α,β-unsaturated carbonyl compounds. The effects of 5a and Feringa’s monodentate phosphoramidite (4, R1, R2 = Et) on the yields and enantioselectivities were fully investigated. The reaction was significantly accelerated in the presence of a base such as KOH and Et3N, allowing the reaction to be completed at the lower temperatures than 50 °C. The addition to cyclic enones such as 2-cyclopentenone, 2-cyclohexenone and 2-cycloheptenone at 50 °C in the presence of an [Rh(coe)2Cl]2-4 (R1, R2 = Et) complex resulted in enantioselectivities up to 98%, though it was less effective for acyclic enones (0–70% ee). On the other hand, a complex between [Rh(nbd)2]BF4 and 5a completed the addition to cyclic enones within 2 h at room temperature in the presence of Et3N with 86–99% yields and 96–99.8% ee. This catalyst was also effective for acyclic enones, resulting in 62–98% yields and 66–94% ee. The 1,4-additions of arylboronic acids to unsaturated lactones and acyclic esters with rhodium(I)-phosphoramidites complexes were also investigated.  相似文献   

5.
《Tetrahedron: Asymmetry》2006,17(12):1842-1845
Two new ligands (S,S)-3-(1,1′-bi-2-naphthol-3-yl)-5,6,7,8-tetrahydro-1,1′-bi-2-naphthol [(S,S)-1] and (S)-3-(morpholin-4-ylmethyl)-H4-BINOL [(S)-2] have been synthesized via Suzuki cross-coupling reaction and a Mannich-type reaction, respectively. In the presence of titanium tetraisopropoxide, 0.8 mol % of ligand (S,S)-1 catalyzed the asymmetric addition of diethylzinc to aromatic aldehydes in good yield and with high enantioselectivity.  相似文献   

6.
A study of copper-phosphoramidite-catalysed ZnR2 and AlR3 additions to 1,1′-dicarbonyl-activated cyclic Michael acceptors has revealed high enantioselectivities for AlR3 (R = Me, Et) 1,4-addition to a range of 3-acylcoumarins (85–98% ee, trans:cis ~90:10) using commercial or readily available ligands. Large substituents at the 6-position, and to some extent at the 5-position, of the coumarin are less well tolerated, nor is truncation of the coumarin motif to a comparable 2-acylcyclohexenone (ee values up to 78%).  相似文献   

7.
A combination of palladium with ferrocene-based phosphine ligand with a carbon–bromine bond was found to be a good catalyst for the 1,4-addition of arylboronic acids to α,β-unsaturated ketones and the 1,2-addition to aldehydes. Using Pd(dba)2 and (S,Rp)-[1-(2-bromoferrocenyl)ethyl]diphenylphosphine (S,Rp)-1, 3-phenylcyclohexanone was obtained from the reaction of 2-cyclohexen-1-one with phenylboronic acid in the presence of K2CO3 in toluene at room temperature after 3 h in 92% yield with 76% ee. In the 1,2-addition of 4-methylphenylboronic acid to benzaldehyde, 96% of (4-methylphenyl)phenylmethanol was afforded after 24 h, while the enantiomeric excess was only 6%.  相似文献   

8.
Reaction between a chiral imidazole–amine precursor derived from (1R,2R)-trans-diaminocyclohexane and P1Cl (where P1 = PPh2, P(1,3,5-Me3C6H3)2, P(2,2′-O,O′-(1,1′-biphenyl), P((R)-(2,2′-O,O′-(1,1′-binaphthyl))) and P((S)-(2,2′-O,O′-(1,1′-binaphthyl)))) followed by RX (where R = nPr, iPr, CHPh2, X = Br; R = iPr, X = I), respectively, gives a selection of chiral imidazolium–phosphine compounds. Deprotonation of the imidazolium salt gives the corresponding NHC–P ligands that can be used in metal-mediated asymmetric catalytic applications. Catalytic reactions show that NHC–P ligands give a significantly greater rate of reaction for a palladium catalysed allylic substitution reaction in comparison to analogous di-NHC or NHC–imine ligands and that NHC–P hybrids are also effective for iridium catalysed transfer hydrogenation.  相似文献   

9.
《Tetrahedron: Asymmetry》2005,16(7):1355-1360
Racemic trans-4,5-dimethylhydrofuran-2(3H)-one was synthesised from 5-methyl-furan-2(3H)-one, (α-angelica lactone). The key reaction in the synthesis was the 1,4-conjugate addition of an organocuprate to 5-methylfuran-2(5H)-one (β-angelica lactone). Different types of organocuprates were tested with the highest anti:syn ratio of 99.4:0.6 being obtained by the use of a Gilman organocuprate reagent. The enantioselective acylation of racemic 3-methyl-pentan-1,4-diol, catalysed by a variety of lipases in organic media, was investigated. The highest enantioselectivity (E > 400) was obtained when Novozyme 435 was used as the catalyst at a water activity of aw  0. Thus, both enantiomers, (3S,4R)- and (3R,4S)-3-methyl-pentan-1,4-diol, were obtained in very high diastereomeric (>99% de) and enantiomeric purities (>99.8% and >97.4% ee, respectively).  相似文献   

10.
《Tetrahedron: Asymmetry》2017,28(4):545-549
(Z)-3-XCH2-4-(C6H5)-3-buten-2-one enones (X = SCN, N3, SO2Me, OC6H5) were synthesized and submitted to biotransformations using whole Saccharomyces cerevisiae cells. The enone (X = SCN) produced (R)-4-(phenyl)-3-methylbutan-2-one (R)-6 with 93% ee and enones (X = N3, SO2Me, OC6H5) yielded a mixture of (R)-6 and the corresponding CC bond reduction products. Biotransformation with enone (X = N3) mediated by Saccharomyces cerevisiae resulted in two products via two different routes: (i) the ketone (R)-4-azido-3-benzylbutan-2-one in 28% yield and with >99% ee by CC bond reduction; (ii) ketone (R)-6 in 51% yield and with 95% ee via cascade reactions beginning with azido group displacement by the formal hydride from flavin mononucleotide in an SN2′ type reaction followed by reduction of the newly formed CC bond.  相似文献   

11.
The 4-deoxy-4-C-sulfonic acid and 6-deoxy-6-C-sulfonic acid derivatives of methyl α-d-gluco- and α-d-galactopyranosides were prepared by triflate-mediated nucleophilic displacement reactions, either with NaHSO3 or with AcSK. The triflate esters of methyl 2,3,4-tri-O-benzyl- 1, methyl 2,3,6-tri-O-benzyl-α-d-glucopyranoside 9 and methyl 2,3,6-tri-O-benzyl-α-d-galactopyranoside 5 provided methyl 6-deoxy-6-C-sulfo-α-d-glucopyranoside 4, methyl 4-deoxy-4-C-sulfo-α-d-galactopyranoside 12 and α-d-glucopyranoside 8, respectively. The triflate derivative of methyl 2,3,4-tri-O-benzyl-α-d-galactopyranoside 13 gave methyl 3,6-anhydro-2,4-di-O-benzyl-α-d-galactopyranoside 14. Formation of the 3,6-anhydro derivative was prevented by using 3,4-O-isopropylidene acetal protection to obtain methyl 6-deoxy-6-C-sulfo-α-d-galactopyranoside 19. The aim of the research is to replace the sulfate esters by sulfonic acids in the repeating oligosaccharide units of glycosaminoglycans or in different oligosaccharide ligands.  相似文献   

12.
Pyridine-based macrocycles were prepared by treating 2,6-bis[[2′6′-bis(bromomethyl)-4′-methylphenoxy]methyl]pyridine 3 with the appropriate chiral aminoalcohols. The enantiomeric recognition of these macrocycles bearing aminoalcohol subunits of the pyridinocrown type ligand was evaluated for chiral organic ammonium salts by UV titration. The important differences were observed in the Ka values of (R)-Am2 and (S)-Am2 for (S,S,S)-1, (S,S,S)-2 and (S,S,S)-3 hosts, KS/KR = 5.0, KS/KR = 2.4 and KS/KR = 5.0, respectively. There seems to be a general tendency for hosts to recognise (S)-enantiomers for both Am1 and Am2.  相似文献   

13.
The 1,4-addition of the enolate generated from α-methylated acetoacetate incorporated at C-4 of methyl 6-deoxy-2,3-di-O-(tert-butyldimethylsilyl)-α-d-glucopyranoside to methyl vinyl ketone, followed by aldol condensation of the resulting 1,4-addition product under two base-mediated conditions, provided 4-O-functionalized d-glucose derivatives with high diastereoselectivity. These products install a 3-methyl-2-cyclohexen-1-one-4- (or -6-) carboxylic acid as the O-4 ester, in which C-4 or C-6 is an asymmetric quaternary carbon. Removal of the sugar template from those aldol condensation products provided synthetically useful 3,6-dimethyl-2-cyclohexen-1-one-6-carboxylic acid and 3,4-dimethyl-2-cyclohexen-1-one-4-carboxylic acid derivatives both in high enantioenriched forms.  相似文献   

14.
Two furostanol saponins were obtained from the n-butanol fraction of methanol extract from Tupistra chinensis rhizomes,a folk medicine of Shennongjia Forest District of Hubei Province.Their structures were determined as (25S)-26-O-(β-D-glucopyranosyl)- furost-1β,3β,22α,26-tetrol-3-O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→2)-β-D-glucopyranoside (1) and (25R)- 26-O-(β-D-glucopyranosyl)-furost-1β,3β22α,26-tetrol 3-O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→2)-β-D-glu- copyranoside (2),on basis of chemical and spectroscopic evidences.1 and 2 displayed marked inhibitory action towards COX-2 production in macrophages of the rat abdomen induced by LPS at 20μg/mL.  相似文献   

15.
Alkyl and arylplatinum complexes with 1,5-cyclooctadiene ligand, [PtR2(cod)] (R = Me, Ph, C6H4-p-CF3, C6F5), react with secondary phosphines, PHR′2 (R′ = i-Bu, t-Bu, Ph), to afford the mononuclear platinum complexes, cis-[PtR2(PHR′2)2] (1a: R = Me, R′ = i-Bu; 1b: R = Me, R′ = t-Bu; 1c: R = Me, R′ = Ph; 2a: R = Ph, R′ = i-Bu; 2b: R = Ph, R′ = t-Bu; 2c: R = R′ = Ph; 3a: R = C6H4-p-CF3, R′ = i-Bu; 3b: R = C6H4-p-CF3, R′ = t-Bu; 3c: R = C6H4-p-CF3, R′ = Ph; 4a: R = C6F5, R′ = i-Bu; 4c: R = C6F5, R′ = Ph) in 81–98% yields. Molecular structures of the complexes except for 1a, 1c and 2a were determined by X-ray crystallography. Complex 1b has a square-planar structure with Pt–C(methyl) bonds of 2.083(8) and 2.109(8) Å, while the Pt–C(aryl) bonds of 2bc, 3ac, 4a and 4c (2.055(1)–2.073(8) Å) are shorter than them. Thermal decomposition of 1b, 2ac, and 3ac releases methane, biphenyl or 4,4′-bis(trifluoromethyl)biphenyl as the organic products, which are characterized by NMR spectroscopy. The solid product of the thermal reactions of 2b and 2c were characterized as the metallopolymers formulated as [Pt(PR′2)2]n (5b: R′ = tBu; 5c: R′ = Ph), based on the solid-state NMR and elemental analyses.  相似文献   

16.
《Tetrahedron: Asymmetry》1998,9(14):2409-2413
The copper(II) catalyzed enantioselective 1,4-addition reactions of diethylzinc to cyclic enones in the presence of novel phosphorus amidite ligands, easily prepared from α,α,α′,α′-tetraphenyl-2,2′-dimethyl-1,3-dioxolane-4,5-dimethanol (TADDOL) derivatives, resulted in e.e.s up to 71% for cyclohexenone and up to 62% for cyclopentenone. A remarkable enhancement of enantioselectivity was observed upon the addition of powdered molecular sieves to the reaction mixture.  相似文献   

17.
The substrate specificity of an engineered Bacillus subtilis epoxide hydrolase, which so far had shown high activity and enantioselectivity with 1-benzyloxymethyl-1-methyloxirane, has been studied by altering the methyl substituent into hydrogen, oxygen-containing functionalities, and unsaturated homologs. High enantioselectivity (E = 44) was observed with 1-benzyloxymethyl-1-vinyloxirane with a proper catalytic activity. The elaboration of the reaction conditions and work-up procedures enabled a preparative-scale kinetic resolution, to give (R)-2-benzyloxymethyl-3-butene-1,2-diol and its antipodal (R)-epoxide in high ees.  相似文献   

18.
《Tetrahedron: Asymmetry》2007,18(15):1809-1827
The dipolar cycloaddition of (Z)-N-benzyl-(3-O-benzyl-1,2-O-isopropylidene-α-d-ribofuranos-5-ylidene)amine N-oxide to methyl acrylate gives a 53:16:26:5 diastereomeric mixture of isoxazolidine derivatives. The dipolar cycloaddition of the xylo analogue to methyl acrylate is more diastereoselective, producing a 44:13:43 mixture of only three diastereomers. The ribo-configured adducts have been converted (4 steps only) into the new (2R,6S,7S,8R,8aR)-, (2S,6S,7S,8R,8aR)-, (2S,6S,7S,8R,8aS)- and (2R,6S,7S,8R,8aS)-2,6,7,8-tetrahydroxyindolizidines. Similarly, the two xylo-configured major isoxazolidine derivatives were converted into the known derivatives (2R,6S,7R,8R,8aS)- and (2S,6S,7R,8R,8aR)-2,6,7,8-tetrahydroxyindolizidines. The six isomeric indolizidine derivatives obtained have been evaluated for their inhibiting activities towards 15 glycosidases. Only the (2R,6S,7S,8R,8aR)-configured isomer is a selective inhibitor of amyloglucosidases from Aspergillus niger (IC50 = 350 μM) and from Rhizopus mold (IC50 = 90 μM, Ki = 195 μM, non-competitive), the other indolizidines show very little inhibitory activity at 1 mM concentration.  相似文献   

19.
《Tetrahedron: Asymmetry》2006,17(3):416-427
In the presence of a rhodium catalyst (5 mol %) generated in situ from [Rh(cod)Cl]2 and (S,S′)-(R,R′)-C2-ferriphos-tolyl, the asymmetric ring-opening reaction of N-Boc-azabenzonorbornadienes with dibenzylamine proceeded with excellent enantioselectivity (up to >99% ee) to give the corresponding 1,2-diamine scaffolds in high yields. The sequential deprotection of the ring-opened products and treatment with tartaric acid gave the enantiomerically pure 1,2-diamine tartrate salts. These salts were used for the preparation of new chiral ligands such as the salen-type ligands and Trost-type ligands.  相似文献   

20.
Enantioselective copper-catalyzed 1,4-additions of dialkylzincs to enones were carried out in the presence of 1 mol % of Cu(OTf)2 and 2.5 mol % of an N,N,P-ligand possessing a tert-butyl group at the adjacent position of the nitrogen of pyridine to afford the corresponding 1,4-adducts in up to 98% ee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号