首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
应用密度泛函理论DFT/B3LYP对HO2+NO2反应进行了研究, 在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2自由基与NO2分子反应的单重态和三重态反应势能面, 计算结果表明, 单重态反应势能面中的直接氢抽提反应机理是此反应的主要反应通道, 即HO2自由基的氢原子转移到NO2分子的氮原子上形成产物P1 (HNO23O2), 另一个可能的反应通道是单重态反应势能面上HO2中的端位氧原子进攻NO2分子中的氮原子形成中间体1 (HOONO2), 接着中间体1 (HOONO2)经过氢转移形成产物P2 (trans-HONO+3O2), 以上两个反应通道都是放热反应通道, 分别放热90.14和132.52 kJ•mol-1.  相似文献   

2.
齐斌  晁余涛 《化学学报》2007,65(19):2117-2123
在6-311+G(2d,2p)水平下, 采用密度泛函理论(DFT)的B3LYP方法, 研究了Criegee 自由基CH2O2与H2O的反应. 结果表明反应存在三个通道: CH2O2+H2O®HOCH2OOH (R1); CH2O2+H2O®HCO+OH+H2O (R2); CH2O2+H2O®HCHO+H2O2 (R3), 各通道的势垒高度分别为43.35, 85.30和125.85 kJ/mol. 298 K下主反应通道(R1)的经典过渡态理论(TST)与变分过渡态理论(CVT)的速率常数kTSTkCVT均为2.47×10-17 cm3•molecule-1•s-1, 而经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT 5.22×10-17 cm3•molecule-1•s-1. 另外, 还给出了200~2000 K 温度范围内拟合得到的速率常数随温度变化的三参数Arrhenius方程.  相似文献   

3.
采用密度泛函理论的B3LYP方法, 在6-311++G(d,p)基组水平上研究了CH3自由基与HNCO的微观反应机理, 优化了反应过程中的反应物、中间体、过渡态和产物, 为了获得更精确的能量信息, 还计算了体系在反应途径上各驻点的能量. 振动分析和IRC分析结果证实了中间体和过渡态的真实性, 计算所得的键鞍点电荷密度的变化情况也确认了反应过程. 对于CH3自由基与HNCO反应, 找到了七条可行的反应通道, 对结果的分析表明: 通道CH3+HNCO→TS7→IM4→TS9→IM5, 控制步骤活化能最低, 是该反应的主要通道. 在该反应体系中质子迁移过程反应活化能不高, 也是能发生的.  相似文献   

4.
尚静  查东  李来才  田安民 《化学学报》2006,64(9):923-929
采用密度泛函理论的B3LYP方法, 在6-311++G(d,p)基组水平上研究了CH3自由基与HNCO的微观反应机理, 优化了反应过程中的反应物、中间体、过渡态和产物, 为了获得更精确的能量信息, 还计算了体系在反应途径上各驻点的能量. 振动分析和IRC分析结果证实了中间体和过渡态的真实性, 计算所得的键鞍点电荷密度的变化情况也确认了反应过程. 对于CH3自由基与HNCO反应, 找到了七条可行的反应通道, 对结果的分析表明: 通道CH3+HNCO→TS7→IM4→TS9→IM5, 控制步骤活化能最低, 是该反应的主要通道. 在该反应体系中质子迁移过程反应活化能不高, 也是能发生的.  相似文献   

5.
聚羟基丁酸-戊酸的非等温热分解反应动力学   总被引:4,自引:0,他引:4  
用非等温TG-DTA技术, 在5.0、10.0、15.0和20.0 K•min-1线性升温条件下, 研究聚羟基丁酸-戊酸(PHBV)的热分解反应动力学. 结果表明, 分解过程分三个阶段:分解初期、分解中期和分解后期. 分解初期的机理函数为Avrami-Erofeev方程(n=1/2), 对应随机成核和随后生长机理, 表观活化能Ea(β→0)为69.44 kJ•mol-1, 指前因子A(β→0)为106.27 s-1;分解中期的机理函数为Avrami-Erofeev方程(n =2/5), 对应随机成核和随后生长机理, 表观活化能Ea(β→0)为117.64 kJ•mol-1, 指前因子A(β→0)为1011.48 s-1;分解后期的机理函数为Mampel Power法则(n=1/3), 对应机理为幂函数法则, 表观活化能Ea(β→0)为116.64 kJ•mol-1, 指前因子A(β→0)为108.68 s-1.  相似文献   

6.
应用密度泛函理论DFT/B3LYP对HO2+NO2反应进行了研究, 在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2自由基与NO2分子反应的单重态和三重态反应势能面, 计算结果表明, 单重态反应势能面中的直接氢抽提反应机理是此反应的主要反应通道, 即HO2自由基的氢原子转移到NO2分子的氮原子上形成产物P1 (HNO23O2), 另一个可能的反应通道是单重态反应势能面上HO2中的端位氧原子进攻NO2分子中的氮原子形成中间体1 (HOONO2), 接着中间体1 (HOONO2)经过氢转移形成产物P2 (trans-HONO+3O2), 以上两个反应通道都是放热反应通道, 分别放热90.14和132.52 kJ•mol-1.  相似文献   

7.
CCl2与CH2O插入反应机理及热力学与动力学特性的理论研究   总被引:3,自引:0,他引:3  
李志锋  吕玲玲  康敬万 《化学学报》2007,65(11):1019-1026
采用密度泛函B3LYP/6-311G*和高级电子相关耦合簇[CCSD(T)/6-311G*]方法计算研究了CCl2与CH2O的插入反应机理, 全参数优化了反应势能面各驻点的几何构型, 用内禀反应坐标(IRC)和频率分析方法, 对过渡态进行了验证. 研究结果表明: 反应(1)是单重态二氯卡宾与甲醛插入反应的主反应通道. 该反应由两步组成: (i)两反应物首先经一无能垒的放热反应, 放出9.73 kJ•mol-1的热量, 生成一中间体IM1, (ii)中间体IM1经一过渡态TS1, 发生H的转移, 生成产物P1, 其势垒为47.32 kJ•mol-1. 用RRKM-TST理论计算了300~1900 K温度范围内反应(1)的压力效应. 用经Wigner校正的Eyring过渡态理论研究了不同温度下该反应的热力学和动力学性质. 从热力学和动力学角度综合分析, 在高压限101325 Pa下, 该反应进行的适宜温度范围为400~1800 K, 如此, 反应既有较大的自发趋势和平衡常数, 又具有较快的反应速率.  相似文献   

8.
采用密度泛函理论B3LYP方法研究了SiH2自由基与HNCO的反应机理, 并在B3LYP/6-311++G**水平上对反应物、中间体、过渡态进行了全几何参数优化, 通过频率分析和内禀反应坐标(IRC)确定了中间体和过渡态. 为了得到更精确的能量值, 又用QCISD(T)/6-311++G**方法计算了在B3LYP/6-311++G**水平优化后的各个驻点的相对能量. 计算结果表明SiH2自由基与HNCO的反应有五条反应通道, 其中顺式反应通道SiH2+HNCO→IM3→ TS4→IM5→TS5→IM6→SiH2NH+CO反应能垒最低, 为主反应通道.  相似文献   

9.
采用密度泛函理论B3LYP方法研究了SiH2自由基与HNCO的反应机理, 并在B3LYP/6-311++G**水平上对反应物、中间体、过渡态进行了全几何参数优化, 通过频率分析和内禀反应坐标(IRC)确定了中间体和过渡态. 为了得到更精确的能量值, 又用QCISD(T)/6-311++G**方法计算了在B3LYP/6-311++G**水平优化后的各个驻点的相对能量. 计算结果表明SiH2自由基与HNCO的反应有五条反应通道, 其中顺式反应通道SiH2+HNCO→IM3→ TS4→IM5→TS5→IM6→SiH2NH+CO反应能垒最低, 为主反应通道.  相似文献   

10.
CF3O2自由基和NO反应机理的理论研究   总被引:1,自引:0,他引:1  
用密度泛函理论(DFT)的B3LYP方法, 分别在6-31G、6-311G、6-311+G(d)基组水平上研究了CF3O2自由基和NO反应机理. 研究结果表明, CF3O2自由基和NO反应存在三条可行的反应通道, 优化得到了相应的中间体和过渡态. 从活化能看, 通道CH3O2+NO→IM1→TS1→IM2→TS2→CF3O+ONO的活化能最低, 仅为70.86 kJ•mol-1, 是主要反应通道, 主要产物是CF3O和NO2. 而通道CH3O2+NO→IM1→TS3→CF3ONO2和CH3O2+NO→TS4→IM3→TS5→IM4→TS6→CF3O+NOO的活化能较高, 故该反应难以进行.  相似文献   

11.
The geometric structures and conformational properties of trifluoromethanesulfonic anhydride, (CF3SO2)2O, and bis(trifluoromethylsulfonyl)difluoromethane, (CF3SO2)2CF2 have been studied by gas electron diffraction (GED) and ab initio calculations (HF/3–21G*). The calculations predict for both systems two stable conformers with C2 symmetry and one with C1 symmetry. In both compounds structures with C2 symmetry and dihedral angles SOSC ≈ 100° ((CF3SO2)2O) and SCSC≈ 150° ((CF3SO2)2CF2 are lowest in energy. According to the GED analyses the dominant conformer of (CF3SO2)2O2 possesses C2 symmetry with SOSC dihedral angles of 99.1(14)°. The presence of up to 30% of the two other conformers cannot be excluded; for (CF3SO2)2CF2 only one conformer with C2 symmetry and SCSC dihedral angles of 143(2)° is observed. A complete set of geometric parameters is given.  相似文献   

12.
Gas-phase reaction of C(1)F3S(2)O2O(3)C(4)H2C(5)F3 and F(16) is investigated using DFT method. The geometries of various stationary points and their relative energies are obtained from 6-31+G*, 6-311G**, and 6-311++G** levels. In the SN2(C) reaction leading to the cleavage of the C(4)–O(3) bond, the reaction complex results from attacking of F at a hydrogen atom H11 attached to carbon atom C(4). Afterward, F is attacking the atom C(4) from the backside of the atom O(3) with the help of the neighboring effect, and meanwhile a multi-membered ring, F(16)–H(11)–C(4)–C(5)–F(16), is being formed. The SN2(C) reaction is irreversible. On the contrary, the SN2(S) reaction leading to the cleavage of the S(2)–O(3) bond is reversible, and it is initiated by attacking of F at the atom S(2) from the backside of the atom O(3). The products of the reaction CF3SO3CH2CF3 +F should be, thermodynamically, controlled due to the reversibility of the SN2(S) reaction, and those result, chemospecifically, from the cleavage of the C–O bond. At last, the SCRF calculations confirm that the solvent effect is preferable to the SN2(C) reaction.  相似文献   

13.
The relative modifications induced in the structure of perfluorodiethyl ether (CF3CF2)2O and perfluoroisopropyl methyl ether CF3OCF(CF3)2 by oxygen and fluorine protonation are studied at the RHF level with the 3–21G basis and correlated with their proton affinities and dissociation energies.  相似文献   

14.
在G3MP2B3结构优化和能量计算的基础上, 采用RRKM理论和疏松过渡态模型重新估算了过氧硝酸乙酰酯(PAN)的热分解反应PAN→CH3C(O)OO+NO2(R1)的反应速率常数, 得到与实验值吻合的结果.用同样的模型计算了PAN→CH3C(O)O+NO3(R2)的反应速率常数. 结果表明, 在相同的反应条件下, R1是主要的分解通道, R2是次要通道, R2的反应速率常数比R1的小两个数量级.  相似文献   

15.
The geometric structures and conformational properties of trifluoromethanesulfonic anhydride, (CF3SO2)2O, and bis(trifluoromethylsulfonyl)difluoromethane, (CF3SO2)2CF2 have been studied by gas electron diffraction (GED) and ab initio calculations (HF/3–21G*). The calculations predict for both systems two stable conformers with C2 symmetry and one with C1 symmetry. In both compounds structures with C2 symmetry and dihedral angles SOSC ≈ 100° ((CF3SO2)2O) and SCSC ≈ 150° ((CF3SO2)2CF2) are lowest in energy. According to the GED analyses the dominant conformer of (CF3SO2)2O possesses C2 symmetry with SOSC dihedral angles of 99.1(14)°. The presence of up to 30% of the two other conformers cannot be excluded; for (CF3SO2)2CF2 only one conformer with C2 symmetry and SCSC dihedral angles of 143(2)° is observed. A complete set of geometric parameters is given.  相似文献   

16.
The reaction for CH3CH2+O(3P) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single-point calculations for all the stationary points were carried out at the QCISD(T)/6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major products are the CH2O+CH3, CH3CHO+H and CH2CH2+OH in the reaction. For the products CH2O+CH3 and CH3CHO+H, the major production channels are A1: (R)→IM1→TS3→(A) and B1: (R)→IM1→TS4→(B), respectively. The majority of the products CH2CH2+OH are formed via the direct abstraction channels C1 and C2: (R)→TS1(TS2)→(C). In addition, the results suggest that the barrier heights to form the CO reaction channels are very high, so the CO is not a major product in the reaction.  相似文献   

17.
Different from the traditional pyrometallurgical recovery process of Li and Co from spent lithium-ion batteries, a new recovery method for Li and Co was established by converting LiCoO2 into water-soluble metal sulfates by roasting a mixture of LiCoO2 and NaHSO4·H2O. The evolution law of the mixture with increased roasting temperature was investigated by thermogravimetry-differential scanning calorimetry(TG-DSC), in situ X-ray diffraction(XRD), XRD, and X-ray photoelectron spectroscopy(XPS). The results show that the phase transition of LiCoO2 mixed with NaHSO4·H2O with increased temperature proceeded as follows:LiCoO2, NaHSO4·H2O→LiCoO2, NaHSO4→Li1-xCoO2, LiNaSO4, Na2S2O7, Na2SO4→Li1-xCoO2, Co3O4, LiNaSO4, Na2SO4→Co3O4, LiNaSO4. The reaction mechanism of this roasting process may be as follows:LiCoO2+NaHSO4·H2O→1/2Li2SO4+ 1/2Na2SO4+1/3Co3O4+1/12O2+3/2H2O, Li2SO4+Na2SO4=2LiNaSO4.  相似文献   

18.
Photolyses of CF3C(O)X and C2F5C(O)X (X=Cl, F) at 254 nm in the presence of O2 yield the perfluorinated radicals C2F5O (C2) and CF3O (C1), respectively. The C2 radicals decompose to give CF3 radicals:
C2F5O→CF3+CF2O
which, in turn, react with O2 leading to the formation of C1 radicals. When in addition to O2, CO is present, the C1 radicals react with it leading to its catalytic oxidation to CO2. The trioxide CF3OC(O)O3C(O)OCF3 was observed following the photolysis of all four halides in the presence of O2 and CO.

The other radical partners coming from the initial step in the photolysis (XC(O)) as well as the products of their reaction with O2 (XC(O)Oy, y=1, 2) do not react with CO but when X=F they lead to the formation of a new stable peroxy molecule with the formula CF3OC(O)O2C(O)F. Some of the properties of this new molecule, its stability and its IR features are presented in this work.  相似文献   


19.
The mechanism and kinetics for the reaction of propene(CH3CH=CH2) molecule with O(1D) atom were investigated theoretically. The electronic structure information of the potential energy surface(PES) was obtained at the B3LYP/6-311+G(d,p) level, and the single-point energies were refined by the multi-level MCG3-MPWB method. The calculated results show that O(1D) atom can attack CH3CH=CH2 via the barrierless insertion mechanism to form four energy-riched intermediates CH3C(OH)CH2(IM1), CH3CHCHOH(IM2), CH2OHCHCH2(IM3) and cyclo- CH2OCHCH3(IM4), respectively, on the singlet PES. The branching ratios as well as the pressure- and temperaturedependence of various product channels for this multi-well reaction were predicted by variational transition-state and Rice-Ramsperger-Kassel-Marcus(RRKM) theories. The present results will be useful to gain a deep insight into the reaction mechanism and kinetics of CH3CH=CH2+O(1D) reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号