首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The porous TiO2 microspheres were prepared by the reversed-phase suspension polymerization and sol-gel method using reversed-phase suspension droplets as the templates. The CO oxidation catalytic properties of the CuO/TiO2 catalysts prepared by hydrothermal method and impregnation method were extensively investigated. The structure of CuO/TiO2 catalysts was determined by TG-DTA, XRD, TEM, and XPS. The results indicated that the redox capacity of CuO/TiO2 was greatly depended on the aqueous solution concentration of Cu(NO3)2 used in the preparation of CuO/TiO2 and the calcination temperature of the CuO/TiO2 catalysts.  相似文献   

2.
Amorphous TiO2-coated ZnO nanoparticles were prepared by the solvothermal synthesis of ZnO nanoparticles in ethanol and the followed by sol-gel coating of TiO2 nanolayer. The analyses of X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that the resultant ZnO nanoparticles were hexagonal with a wurtzite structure and a mean diameter of about 60 nm. Also, after TiO2 coating, the TEM images clearly indicated the darker ZnO nanoparticles being surrounded by the lighter amorphous TiO2 layers. The zeta potential analysis revealed the pH dependence of zeta potentials for ZnO nanoparticles shifted completely to that for TiO2 nanoparticles after TiO2 coating, confirming the formation of core-shell structure and suggesting the coating of TiO2 was achieved via the adhesion of the hydrolyzed species Ti-O to the positively charged surface of ZnO nanoparticles. Furthermore, the analyses of Fourier transform infrared (FTIR) and Raman spectra were also conducted to confirm that amorphous TiO2 were indeed coated on the surface of ZnO nanoparticles. In addition, the analyses of ultraviolet-visible (UV-VIS) and photoluminescence (PL) spectra revealed that the absorbance of amorphous TiO2-coated ZnO nanoparticles at 375 nm gradually decreased with an increase in the Ti/Zn molar ratio and the time for TiO2 coating, and the emission intensity of ZnO cores could be significantly enhanced by the amorphous TiO2 shell.  相似文献   

3.
在制备CuO/ZnO/Al2O3催化剂的老化过程中,采用微波辐射老化技术,着重研究了溶剂极性对前躯体物相组成,烧后CuO/ZnO/Al2O3催化剂结构及其在浆态床合成甲醇工艺中催化性能的影响。通过XRD、DTG、H2-TPR,FTIR、HR-TEM和XPS对前驱体及催化剂表征表明,沉淀母液在微波辐射条件下进行老化,溶剂的极性对前躯体物相组成及催化剂结构影响显著。随着溶剂极性的增大,Zn2+/Cu2+取代Cu2(CO3)(OH)2/Zn5(CO3)2(OH)6中Cu2+/Zn2+的取代反应增强,使得前躯体中(Cu,Zn)5(CO3)2(OH)6和(Cu,Zn)2(CO3)(OH)2物相的含量增多,结晶度提高,导致烧后CuO/ZnO/Al2O3催化剂中CuO-ZnO协同作用增强,且CuO晶粒减小,表面Cu含量增加,催化剂活性和稳定性提高。水溶剂的极性最大,制备的催化剂活性和稳定性最好,甲醇的时空收率(STY)和平均失活率分别为320 mg.g-1.h-1和0.11%.d-1。  相似文献   

4.
用尿素-硝酸盐燃烧法制备了一系列的负载于HZSM-5上的CuO-ZnO-Al2O3纳米复合材料(CZA/HZSM-5)。研究了燃料与氧化物的比率对所合成的复合材料的理化性质的影响。用TGA/DTG,FTIR和XRD等研究了尿素-硝酸盐凝胶的热分解和煅烧粉体的相演变过程。FESEM结果表明在燃烧过程中燃料的用量对CZA/HZSM-5的性质有重大影响。CuO和ZnO的晶粒首先随尿素量的增加而增大,然后随尿素量的增加而减小。CuO和ZnO的相对结晶度随燃料量的增加表现为非单调趋势。随着燃料与硝酸盐的比率的增加,CZA/HZSM-5不仅形貌变得超细和均一,而且表面孔隙率也显著增加。FTIR结果表明HZSM-5的结构甚至在负载了CuO-ZnO-Al2O3纳米粒子后也未被破坏,而且在CuO和ZnO与HZSM-5之间还有表面的键合。TGA/DTG结果指出燃烧合成法是一种由若干过程组合起来的方法,例如前驱体的热分解和前驱体间的放热反应等。另外,提出了CuO-ZnO-Al2O3负载在HZSM-5上的生成机理。  相似文献   

5.
ZnO/TiO2/SnO2 mixture was prepared by mixing its component solid oxides ZnO, TiO2 and SnO2 in the molar ratio of 4?1?1, followed by calcining the solid mixture at 200-1300 °C. The products and solid-state reaction process during the calcinations were characterized with powder X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and Brunauer-Emmett-Teller measurement of specific surface area. Neither solid-state reaction nor change of crystal phase composition took place among the ZnO, TiO2 and SnO2 powders on the calcinations up to 600 °C. However, formation of the inverse spinel Zn2TiO4 and Zn2SnO4 was detected at 700-900 and 1100-1200 °C, respectively. Further increase of the calcination temperature enabled the mixture to form a single-phase solid solution Zn2Ti0.5Sn0.5O4 with an inverse spinel structure in the space group of . The ZnO/TiO2/SnO2 mixture was photocatalytically active for the degradation of methyl orange in water; its photocatalytic mass activity was 16.4 times that of SnO2, 2.0 times that of TiO2, and 0.92 times that of ZnO after calcination at 500 °C for 2 h. But, the mass activity of the mixture decreased with increasing the calcination temperature at above 700 °C because of the formation of the photoinactive Zn2TiO4, Zn2SnO4 and Zn2Ti0.5Sn0.5O4. The sample became completely inert for the photocatalysis after prolonged calcination at 1300 °C (42 h), since all of the active component oxides were reacted to form the solid solution Zn2Ti0.5Sn0.5O4 with no photocatalytic activity.  相似文献   

6.
采用浸渍法制备了CuO/TiO2负载型催化剂,并将其用于CO2加氢制甲醇反应。重点考察了铜的负载量对催化剂性能的影响,并对其物化性能和催化性能之间的关系进行了讨论。结果发现,随着铜负载量的增加,催化剂中金属铜的比表面先增加后减小,当铜的负载量为10%(质量百分数)时达到最大值。催化剂的表面碱性位数量随铜含量的增加持续减小,中等碱位和强碱位的强度下降。当铜的负载量不高于10%时,CO2的转化率与铜的比表面积呈线性关系。甲醇选择性与催化剂的表面碱位性质有关,过强的碱性位会降低甲醇选择性。  相似文献   

7.
采用浸渍法制备了CuO/TiO_2负载型催化剂,并将其用于CO2加氢制甲醇反应。重点考察了铜的负载量对催化剂性能的影响,并对其物化性能和催化性能之间的关系进行了讨论。结果发现,随着铜负载量的增加,催化剂中金属铜的比表面先增加后减小,当铜的负载量为10%(质量百分数)时达到最大值。催化剂的表面碱性位数量随铜含量的增加持续减小,中等碱位和强碱位的强度下降。当铜的负载量不高于10%时,CO2的转化率与铜的比表面积呈线性关系。甲醇选择性与催化剂的表面碱位性质有关,过强的碱性位会降低甲醇选择性。  相似文献   

8.
在微波辐射条件下,对CuO/ZnO/Al2O3催化剂的沉淀母液进行老化,通过XRD、TG、H2-TPR,FTIR、HR-TEM和XPS对前驱体及催化剂微观结构的进行表征,探讨了CuO/ZnO/Al2O3催化剂前驱体晶相转变过程中微波辐射的作用。结果表明,微波辐射有利于Cu2+取代Zn5(CO3)2(OH)6中Zn2+的同晶取代反应。微波辐射的老化过程中,首先发生Cu2+取代Zn5(CO3)2(OH)6中Zn2+生成(Cu,Zn)5(CO3)2(OH)6的同晶取代反应,并于1.0 h内基本完成;随着老化时间继续延长,主要进行Zn2+取代Cu2(CO3)(OH)2中Cu2+生成(Cu,Zn)2(CO3)(OH)2的同晶取代反应,同时(Cu,Zn)5(CO3)2(OH)6进一步结晶。与常规老化1 h制备的前驱体相比,微波辐射老化1.0 h制备的前驱体含有较多的(Cu,Zn)5(CO3)2(OH)6物相,有助于增强焙烧后CuO/ZnO/Al2O3催化剂中CuO-ZnO协同作用,提高表面铜含量,进而提高CuO/ZnO/Al2O3催化剂在浆态床合成甲醇的催化活性和稳定性,在400 h浆态床合成甲醇评价期间,甲醇时空收率最大达318.9 g.kg-1.h-1,失活率仅为0.11%.d-1。  相似文献   

9.
Commercial TiO2 (Hombikat, UV-100) was impregnated with different loadings of zinc nitrate solution and subsequently calcined at different temperatures in order to obtain a stable homogeneous solid composite of ZnO/TiO2. The prepared samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM), UV-vis and Raman spectroscopy, inductively coupled plasma mass spectroscopy (ICP), X-ray photoelectron spectroscopy (XPS) as well as N2 adsorption and desorption measurements. Results show that ZnO was incorporated within the TiO2 crystals and did not form a separate bulky phase or metallic zinc. Moreover, the calcination temperature dramatically modifies the texture properties of the prepared samples compared with original Hombikat TiO2. The photocatalytic performance of the prepared samples was evaluated by monitoring the degradation of methyl orange dye under black light illumination. Three main parameters were studied; ZnO loading, surface area and initial pH of the methyl orange solution. The variation in ZnO loading appears to have less influence on the catalytic activity than either the surface area or the pH.  相似文献   

10.
Four different metal oxide nanoparticles, copper oxide (CuO), aluminum oxide (Al2O3), nickel oxide (NiO), and titanium dioxide (TiO2), were added to poly (2,5-dimethyl aniline) (P25DMA) during synthesis to create different polymer nanocomposites. These polymer nanocomposites were evaluated as potential sensing materials for six different gas analytes (acetaldehyde, acetone, benzene, ethanol, formaldehyde, and methanol). It was found that CuO did not incorporate into the P25DMA and only a small percentage of Al2O3 was incorporated. However, both NiO and TiO2 were incorporated into the P25DMA at the same concentration as during the synthesis step. Overall, the type of metal oxide significantly affected the morphology of the sensing material and the amount of each analyte sorbed. For example, P25DMA doped with 5 wt% Al2O3 had high selectivity towards ethanol, whereas P25DMA doped with 20 wt% TiO2 sorbed the most ethanol. However, P25DMA doped with 20 wt% TiO2 also sorbed a high amount of formaldehyde, making P25DMA doped with 20 wt% TiO2 less selective than P25DMA doped with 5 wt% Al2O3 towards ethanol with respect to formaldehyde.  相似文献   

11.
以(CH_2OH)_2、NH4F和HCl为电解液,纯Ti片、CuCl_2和Na NO3为主要原料,联用阳极氧化和水热法制备CuO表面修饰锐钛矿TiO_2纳米管阵列锂离子电池负极材料(CuO/TiO_2)。使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱仪(EDS)、X射线光电子能谱仪(XPS)和X射线衍射(XRD),研究样品的形貌特征、元素分布、价态和微观物相组成。利用电池充放电测试仪和电化学工作站,探讨材料的电化学嵌锂性能。结果表明,表面修饰后的锐钛矿TiO_2纳米管阵列外侧出现了大量绒毛状纳米CuO,单个绒毛结构的宽度约4 nm,长度约10 nm。在0.3C的电流密度下进行恒电流充放电测试,首次放电容量为550 m Ah·g~(-1),充电容量为490 m Ah·g~(-1)。50次循环后,可逆电流容量仍保持在320 m Ah·g~(-1),具有良好的循环稳定性和电化学特性。  相似文献   

12.
以(CH2OH)2、NH4F和HCl为电解液,纯Ti片、CuCl2和NaNO3为主要原料,联用阳极氧化和水热法制备CuO表面修饰锐钛矿TiO2纳米管阵列锂离子电池负极材料(CuO/TiO2)。使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱仪(EDS)、X射线光电子能谱仪(XPS)和X射线衍射(XRD),研究样品的形貌特征、元素分布、价态和微观物相组成。利用电池充放电测试仪和电化学工作站,探讨材料的电化学嵌锂性能。结果表明,表面修饰后的锐钛矿TiO2纳米管阵列外侧出现了大量绒毛状纳米CuO,单个绒毛结构的宽度约4 nm,长度约10 nm。在0.3C的电流密度下进行恒电流充放电测试,首次放电容量为550 mAh·g-1,充电容量为490 mAh·g-1。50次循环后,可逆电流容量仍保持在320 mAh·g-1,具有良好的循环稳定性和电化学特性。  相似文献   

13.
采用微波加热分解法(一步法)和微波加热处理共沉淀+浸渍法(两步法)制备了CuO/CeO2-ZrO2催化剂,并对其进行了X射线衍射、低温氮气吸附/脱附和程序升温还原等表征,采用色谱流动法考察了催化剂的催化CO低温氧化性能.结果表明,一步法比两步法更有利于使催化剂表面CuO高度分散,CuO与CeO2-ZrO2间的相互作用更强,CuO更容易被还原,从而具有更高的催化CO氧化活性.与CeO2-ZrO2有相互作用的高分散和小颗粒CuO有利于催化剂活性的提高,与CeO2-ZrO2无相互作用的大颗粒CuO对催化剂的活性有抑制作用.  相似文献   

14.
A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO catalysts were characterized by XRD and NH3-TPD techniques, in which CuO/γ-Al2O3 exhibited high degradation activity. The addition of Na2O or K2O into CuO/γ-Al2O3 improved the oxidative degradation of CPs remarkably, in which Na2O was more efficient than K2O. Over CuO/γ-Al2O3-Na2O, CPs were completely converted and the liberation of the inorganic chloride from 2-CP or 4-CP reached 97% or 100% respectively at 30 ?C for 2 h. The supported CuO catalysts with good dispersion of CuO particles and less acid sites were favorable for the efficient oxidative degradation of CPs. In addition, the initial pH of the reaction solution was found to be an important factor which influenced the catalytic oxidative degradation of CPs and the initial pH of 11.2 and 9.8 was preferred for the oxidative degradation of 2-CP and 4-CP respectively over CuO/γ-Al2O3 catalyst.  相似文献   

15.
Ordered porous TiO2 films, including TiO2 nanotube arrays, are fabricated by a sol-gel dip-coating approach via ZnO nanorod templates obtained from aqueous solution approach. The results indicate that the morphologies of ordered porous TiO2 films have been great affected by the sol-gel dip-coating cycle number. Open-ended TiO2 nanotube arrays can be obtained in optimum dip-coating cycle numbers. The TiO2 nanotubes with the inner diameter matching well with the diameters of ZnO nanorods, are well assembled and separate each other. When the cycle number is less than this optimum value, no intact porous TiO2 film can be obtained. As the cycle number is larger than this optimum value, an ordered porous TiO2 film with many throughout holes is formed. The evolutive mechanism of ordered porous TiO2 films is proposed.  相似文献   

16.
Over the last two decades, oxide nanostructures have been continuously evaluated and used in many technological applications. The advancement of the controlled synthesis approach to design desired morphology is a fundamental key to the discipline of material science and nanotechnology. These nanostructures can be prepared via different physical and chemical methods; however, a green and ecofriendly synthesis approach is a promising way to produce these nanostructures with desired properties with less risk of hazardous chemicals. In this regard, ZnO and TiO2 nanostructures are prominent candidates for various applications. Moreover, they are more efficient, non-toxic, and cost-effective. This review mainly focuses on the recent state-of-the-art advancements in the green synthesis approach for ZnO and TiO2 nanostructures and their applications. The first section summarizes the green synthesis approach to synthesize ZnO and TiO2 nanostructures via different routes such as solvothermal, hydrothermal, co-precipitation, and sol-gel using biological systems that are based on the principles of green chemistry. The second section demonstrates the application of ZnO and TiO2 nanostructures. The review also discusses the problems and future perspectives of green synthesis methods and the related issues posed and overlooked by the scientific community on the green approach to nanostructure oxides.  相似文献   

17.
The aim of this study is to clarify the effect of doped metal type on CO2 reduction characteristics of TiO2 with NH3 and H2O. Cu and Pd have been selected as dopants for TiO2. In addition, the impact of molar ratio of CO2 to reductants NH3 and H2O has been investigated. A TiO2 photocatalyst was prepared by a sol-gel and dip-coating process, and then doped with Cu or Pd fine particles by using the pulse arc plasma gun method. The prepared Cu/TiO2 film and Pd/TiO2 film were characterized by SEM, EPMA, TEM, STEM, EDX, EDS and EELS. This study also has investigated the performance of CO2 reduction under the illumination condition of Xe lamp with or without ultraviolet (UV) light. As a result, it is revealed that the CO2 reduction performance with Cu/TiO2 under the illumination condition of Xe lamp with UV light is the highest when the molar ratio of CO2/NH3/H2O = 1:1:1 while that without UV light is the highest when the molar ratio of CO2/NH3/H2O = 1:0.5:0.5. It is revealed that the CO2 reduction performance of Pd/TiO2 is the highest for the molar ratio of CO2/NH3/H2O = 1:1:1 no matter the used Xe lamp was with or without UV light. The molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 produced under the illumination condition of Xe lamp with UV light was 10.2 μmol/g, while that for Pd/TiO2 was 5.5 μmol/g. Meanwhile, the molar quantity of CO per unit weight of photocatalyst for Cu/TiO2 produced under the illumination condition of Xe lamp without UV light was 2.5 μmol/g, while that for Pd/TiO2 was 3.5 μmol/g. This study has concluded that Cu/TiO2 is superior to Pd/TiO2 from the viewpoint of the molar quantity of CO per unit weight of photocatalyst as well as the quantum efficiency.  相似文献   

18.
The nanosized titania and TiO2/SiO2 particles were prepared by the microwave-hydrothermal method. The effect of physical properties TTIP/TEOS ratio and calcination temperature has been investigated. The major phase of the pure TiO2 particle is of the anatase structure, and a rutile peak was observed above 800°C. In TiO2/SiO2 particles, however, no significant rutile phase was observed, although the calcination temperature was 900°C. No peaks for the silica crystal phase were observed at either silica/titania ratio. The crystallite size of TiO2/SiO2 particles decreases as compared to pure TiO2 at high calcination temperatures. The TiO2/SiO2 particles show higher activity on the photocatalytic decomposition of orange II as compared to pure TiO2 particles.  相似文献   

19.
In situ topochemical polymerization of two diacetylene monomers within nanoporous TiO2 thin films was carried out under visible light irradiation. One of the monomers used contains a carboxylic acid group, which could help to link the monomer onto the TiO2 surface covalently. UV-Vis absorption and Raman studies showed that both monomers were successfully photopolymerized. These results suggest that the covalent linkage of the diacetylene to the nanoparticle through the carboxylic acid group is not needed. Since photopolymerization of diacetylene is typically induced by excitation of the monomer at λ< 300 nm, the observed red shift of the photopolymerization wavelength is attributed to the photosensitization effect of TiO2. The morphological study of the polydiacetylene/TiO2 nanocomposite revealed that the diacetylene monomers were polymerized in the vicinity of the TiO2 nanoparticles. This is attributed to the fact that the electron-transfer process occurs at the interface of nanocrystalline TiO2 (nc-TiO2) and the diacetylene monomer and the polymerization is expected to be initiated near the nc-TiO2 surface. Photopolymerization of the carboxylated diacetylene monomer with other oxides nanoparticles, such as ZnO and SiO2 was also investigated.  相似文献   

20.
邓辉  蒋新 《无机化学学报》2011,27(1):119-124
利用吸附法原位制备CuO/SiO2、CuO-Ag/SiO2纳米复合物,研究了不同吸附质体系中预负载的纳米Ag粒子对CuO的影响。结果表明:Ag粒子对CuO的影响因吸附质的不同而不同。以Cu(Ac)2为吸附质,纳米Ag几乎没有影响;以NaOH为吸附质,纳米Ag使得CuO的晶粒粒径增大。这一结果与铜物种对Ag晶粒粒径的影响规律完全不同。通过比较不同吸附质的吸附行为,Cu(OH)2与硅胶表面的相互作用被认为是导致这一现象的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号