首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
A conductometric titration technique has been used to investigate the electron transfer activity of CT molecular complexes formed by arylazopyrimidine and naphthylazopyrimidine derivatives as donors and the organic π‐acceptors p‐nitroaniline, p‐chloroaniline, p‐bromoaniline, anthraquinone, picric acid, α‐nitroso‐β‐naphthol, p‐hydroxybenzaldehyde and maleic anhydride. The study was performed at different degree of temperature and in three different polar solvents namely N,N‐dimethylformamide (DMF), acetonitrile (ACN) and dimethylsulfoxide (DMSO). The stoichiometric ratios of these complexes were found to be 1:1. The dissociation constant (ασM) values of the formed complexes have been calculated, and the effects of solvents as well as types of electron donors on their conductance σp‐values have been examined.  相似文献   

2.
Electron transfer reaction between a simplified model model molecule of α-amino carbon-centered radical and O2 has studied with ab initio calculations at the MP2/6-31 G^**//UHF/6-31 G^** level,The reactant complex and the ion pair complex have been optimized and employed to perform calculation of the reaction heat and the reorganization energy,Solvent effects have been considered by applyning the conductor-like screening model,Theoretical results show that the highly endothermic charge separation process ,in which one electron transfers from the α-amino carbon-centered radical to O2,so as to form an ion pair complex,is difficult to occur in gas-phase,By apply-ing an external electronic field to prepare the charge-locallized molecular orbitals,the charge-separated state has been obtained using the initial-guess-induced self-consistent field technique,The theoretical investigations indicate that the solvent effect in the process of the oxidation of α-animo carbon-centered radical by O2 is remarkable.From the rate constant estima-tion ,it can be predicted that the oxidation of the model donor molecule by O2 can proceed,but not very fast.A peroxyl radi-cal compound has been found to be a competitive intermediate in the oxidation process.  相似文献   

3.
The effects of temperature and solvent on the β‐phase formation and energy transfer in an Ir(III) complex‐containing polyfluorene were investigated. Efficient energy transfer from polyfluorenes host to Ir complexes guest can be realized at low temperature. The formation of β‐phase was observed both in THF solution at low temperature and as suspended nano‐particles at room temperature. In addition, phosphorescent polymer nanoparticles were prepared successfully and exhibited efficient phosphorescent emission.

  相似文献   


4.
We report the comparison of electron transfer kinetic parameters of the ferrocene redox couple in both acetonitrile and in room temperature ionic liquid (RTIL) 1‐butyl‐3‐methylimidiazonium hexafluorophosphate ([C4mim] [PF6]), using edge plane pyrolytic graphite (EPPG), basal plane pyrolytic graphite (BPPG) and glassy carbon (GC) electrodes. Each electrode surface was characterized using SEM and AFM and the surface morphology was analyzed in terms of surface heterogeneity including the distribution of edge plane defects. The experimental data were modeled using both one and two dimensional simulations to correlate the electron transfer parameters obtained with the different surface structure of each electrode. Furthermore, we show that the diffusion domain approximation (commonly used to accurately simulate electron transfer kinetics at graphitic surfaces) breaks down when a BPPG electrode is used in RTIL and demonstrate the near impossibility of assigning rate constant to the basal plane surface.  相似文献   

5.
The S-center radical (ANS·) of sodium 1-anilino-8-naphthalene sulfate (ANS) generated by photoinduced charge transfer in ANS/CdS and ANS/CdS/β-cyclodextrin(β-CD) systems has been studied by using spin trapping electron spin resonance techniques, UV-visible spectroscopic methods, and fluorescence spectroscopic methods. It was found that the S-centered radical (ANS·) was produced by the charge transfer reaction between the ground state ANS and the positive hole h+(CdS) from the valence band of CdS colloids, by the charge transfer from the excited singlet state 1ANS* to the conduction band of CdS colloids, or by both in the ANS/CdS and ANS/CdS/β-CD systems. The ESR signal intensity of the spin adduct (5,5′-dimethyl-1-pyrroline-N-oxide (DMPO)–ANS)·, which is formed from ANS· trapped by DMPO, in the latter system is 15 times stronger than that in the former system. The apparent association constants between ANS and CdS colloids in the absence and presence of β-CD determined from fluorescence quenching experiments are 1097 and 1606 M−1, respectively. From ESR and fluorescence results, it is estimated that the efficiency of photoinduced charge transfer from ANS to CdS colloids in the ANS/CdS/β-CD system is 12.5 times that in the ANS/CdS system.  相似文献   

6.
A semicrystalline inorganic–organic hybrid crosslinked network containing polyhedral oligomeric silsesquioxane (POSS) cores was constructed by the unusual hydrosilylation of the terminal vinyl groups of an internal acetylene‐containing silane linker by a POSS monomer. Products from the thermal treatments of this network in either argon or air at 250, 550, and 1000 °C, respectively, were characterized by Fourier transform infrared, Solid‐state 13C and 29Si magic angle spinning NMR, X‐ray diffraction and XPS analyses. The highly symmetrically functionalized POSS silica clusters, in the fluorite silica phase, in the network were found to remain unchanged on thermal treatment possibly due to the shielding of the silica core by the functionalities and a cancellation of thermal stresses on the silica core. Stabilization of the metastable α‐cristobalite phase, which is typically formed on cooling by a β‐ to α‐transition of the β‐cristobalite phase formed above 1400 °C, was observed in the amorphous regions in the network sample treated only to 1000 °C in air. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号