首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the hydrolysis of fenuron in sodium hydroxide has been investigated spectrometrically in an aqueous medium and in cationic micelles of cetyltrimethylammonium bromide (CTAB) medium. The reaction follows first‐order kinetics with respect to [fenuron] in both the aqueous and micellar media. The rate of hydrolysis increases with the increase in [NaOH] in the lower concentration range but shows a leveling behavior at higher concentrations. The reaction followed the rate equation, 1/kobs = 1/k + 1/(kK[OH?]), where kobs is the observed rate constant, k is rate constant in aqueous medium, and k is the equilibrium constant for the formation of hydroxide addition product. The cationic CTAB micelles enhanced the rate of hydrolytic reaction. In both aqueous and micellar pseudophases, the hydrolysis of fenuron presumably occurs via an addition–elimination mechanism in which an intermediate hydroxide addition complex is formed. The added salts decrease the rate of reaction. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 638–644, 2007  相似文献   

2.
Kinetics of the interaction of histidine and histidine methyl ester with ninhydrin under varying concentrations of reactants, anionic (sodium dodecyl sulphate, SDS), cationic (cetyltrimethylammonium bromide, CTAB) and non‐ionic (Triton X‐100, TX‐100) micelles have been carried out. Rate of the reaction was found to be independent of the initial concentration of histidine (and histidine methyl ester) but was dependent on [Ninhydrin]. The SDS micelles had no effect on the rate of the reaction. In the presence of the CTAB micelles a small enhancement in the rate was observed. The rate − [CTAB] profile showed that the increase in [CTAB] increased the rate up to a maximum value and a further increase had a decreasing effect on the rate. The rate was enhanced by TX‐100 also but, unlike CTAB micelles, TX‐100 possessed a curve without peak for the rate − [TX‐100] profile. The following rate equation was obeyed by the reaction in CTAB and TX‐100 micelles: Values of kw, km, and KS were evaluated and are reported herein. ©1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 103–111, 1999  相似文献   

3.
The effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) on the kinetics of interaction of copper dipeptide complex [Cu(II)‐Gly‐Gly]+ with ninhydrin has been studied spectrophotometrically at 70°C and pH 5.0. The reaction follows first‐ and fractional‐order kinetics, respectively, in complex and ninhydrin. The reaction is catalyzed by CTAB micelles, and the maximum rate enhancement is about twofold. The results obtained in the micellar medium are treated quantitatively in terms of the kinetic pseudophase and Piszkiewicz models. The rate constants (kobs or kΨ), micellar‐binding constants (kS for [Cu(II)‐Gly‐Gly]+, kN for ninhydrin), and index of cooperativity (n) have been evaluated. A mechanism is proposed in accordance with the experimental results. The influence of different inorganic (NaCl, NaBr, Na2SO4) and organic (NaBenz, NaSal) salts on the reaction rate has also been seen, and it is found that tightly bound/incorporated counterions are the most effective. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 556–564, 2007  相似文献   

4.
The rates of reaction between ninhydrin and dipeptide glycyl–glycine (Gly–Gly) have been determined by studying the reaction spectrophotometrically at 70°C and pH 5.0 in aqueous and in aqueous cationic micelles of cetyltrimethylammonium bromide (CTAB). The reaction follows first‐ and fractional‐order kinetics, respectively, in [Gly–Gly] and [ninhydrin]. The observed rate constant is affected by [CTAB] changes and the maximum rate enhancement is ca. three‐fold. As the kψ ? [CTAB] profile shape is characteristic of bimolecular reactions catalyzed by micelles, the catalysis is explained in terms of the pseudo‐phase model of the micelles (proposed by Menger and Portnoy and developed by Bunton and Romsted). The presence of inorganic salts (NaCl, NaBr, Na2SO4) does not reveal any regular effect but the data with organic salts (NaBenz, NaSal) show an increase in the rate followed by a decrease. The kinetic data have been used to calculate the micellar binding constants KS for Gly–Gly and KN for ninhydrin and the respective values are 317 and 69 mol?1 dm3. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 643–650, 2006  相似文献   

5.
The kinetic complex formation of 0.001 M 2‐nitroso‐1‐naphthol (NAPH)with 0.01 M cobalt (II) ion (Co2+) in aqueous in presence of 0.02 M NaOH at 30°C in aqueous and/or in and 0.002 M cetyltrimethylammonium bromide (CTAB) have been studied using spectrophotometer at 430 nm. The present data showed that the reaction is first‐order with respect to [Co2+]T and NAPH. Also, k obs have constant values within concentration 0.015–0.05 M of NaOH and decreases with increase of concentration of CTAB to 0.002 M, then, k obs have constant values up to 0.005 M. The rate of the reaction in the presence of micelles has been explained with the pseudo‐phase model of the kinetics. Association constants of Co2+ and NAPH to CTAB micelle have been calculated. The activation parameters ΔH* and ΔS* have been obtained. The increase of reaction rate with sodium benzoate (C7H5O2Na) also has been discussed.  相似文献   

6.
The alkaline fading of malachite green, which is interpreted as parallel first order and second order reactions, has been studied in cetyltrimethylammonium bromide (CTAB) micellar solution at 25°C using spectrophotometry. A micellar catalytic model is proposed in this paper for constant concentration of hydroxideion. For this model, the first order and the second order rate constants in CTAB micellar phase,k1m and k2m have been obtained.

The experimental results indicate that the first order reaction of malachite green cation with water is catalysed by CTAB micelles while the second order reaction of malachite green cation with hydroxide ion is inhibited by CTAB micelles. The first order rate constant in CTAB micellar phase, k1m , is 210 times of that in the bulk phase, but the second order rate constant in CTAB micellar phase, k2m , is 0. 166 time of that in the bulk phase. The results are interpreted mostly in relation to the micellar micropolarity and electrostatic interaction. @Keywords: Micelle, Micellar catalysis, Parallel first order and seond order reactions, Malachite green  相似文献   

7.
The rates of reaction between metal-dipeptide complex ([Zn(II)-Gly-Phe]+) and ninhydrin have been determined in aqueous and aqueous–cationic micelles of cetyltrimethylammonium bromide (CTAB) at 70°C and pH 5.0. The rate data indicate that the reaction follows the template reaction mechanism in both the media. The reaction followed a first-order and fractional-order kinetics with respect to [Zn(II)-Gly-Phe]+ and [ninhydrin], respectively, in the excess of ninhydrin over [Zn(II)-Gly-Phe]+. The rate constant is affected by [CTAB] changes and maximum rate enhancement is approximately three-fold. CTAB micelles decrease the activation enthalpy and make the activation entropy less negative. Quantitative kinetic analysis of rate constant (k ψ)–[CTAB] data was performed on the basis of pseudophase model of the micelles (proposed by Menger and Portnoy and developed by Bunton). The values of binding constants K S for [Zn(II)-Gly-Phe]+ and K N for ninhydrin with micelles are calculated with the help of observed kinetic data. The results obtained in micellar medium are treated quantitatively on the basis of pseudophase model.  相似文献   

8.
The effect of dicationic gemini surfactants H33C16(CH3)2N+‐(CH2)s‐N+(CH3)2 C16H33, 2Br? (s= 4, 5, 6) on the reaction of a dipeptide glycyl–tyrosine (Gly–Tyr) with ninhydrin has been studied spectrophotometrically at 70°C and pH 5.0. The reaction follows first‐ and fractional‐order kinetics, respectively, in [Gly–Tyr] and [ninhydrin]. The gemini surfactant micellar media are comparatively more effective than their single chain–single head counterpart cetyltrimethylammonium bromide (CTAB) micelles. Whereas typical rate constant (kΨ) increase and leveling‐off regions, just like CTAB, are observed with geminis, the latter produces a third region of increasing kΨ at higher concentrations. This subsequent increase is ascribed to the change in the micellar morphology of the geminis. The pseudophase model of micelles was used to quantitatively analyze the kΨ ? [gemini] data, wherein the micellar‐binding constants KS for [Gly–Tyr] and KN for ninhydrin were evaluated. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 800–809, 2012  相似文献   

9.
The kinetics of base hydrolysis of (αβ S)-(o -methoxy benzoato) (tetraethylenepentamine)cobalt(III) obeyed the rate law: kobs = kOH[OH?], in the range 0.05 ? [OH?]T, mol dm?3 ? 1.0, I = 1.0 mol dm?3, and 20.0–40.0°C. At 25°C, kOH = 13.4 ± 0.4 dm3 mol?1 s?1, ΔH = 93 ± 2 kJ mol?1 and ΔS = 90 ± 5 JK?1 mol?1. Several anions of varying charge and basicity, CH3CO2?, SO32?, SO42?, CO32?, C2O42?, CH2(CO2)22?, PO43?, and citrate3? had no effect on the rate while phthalate2?, NTA3?, EDTA4?, and DTPA5? accelerated the process via formation of the reactive ion pairs. The anionic (SDS), cationic (CTAB), and neutral (Triton X-100) micelles, however, retarded the reaction, the effect being in the order SDS> CTAB > Triton X-100. The importance of electrostatic and hydrophobic effects of the micelles on the selective partitioning of the reactants between the micellar and bulk aqueous pseudo-phases which control the rate are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
In the present paper, kinetics of alkaline degradation of well known drug, indomethacin (2-[1-(4-chlorobenzoyl)-5-methoxy-2-methylindol-3-yl]acetic acid), was studied in presence of excess [NaOH]. The rate of hydrolysis of substrate was independent of the [indomethacin] though it increased linearly with increasing the hydroxide ion concentration with a positive slope, suggesting the following rate law: kobs = k1[OH]. Cationic surfactants having non-reactive ions (cetyltrimethylammonium bromide, CTAB and cetyltrimethylammonium sulfate (CTA)2SO4) first increased the rate constants at lower concentrations and then decreased it at higher concentrations while in case of the surfactant with reactive counterions (cetyltrimethylammonium hydroxide, CTAOH) the rate increases sharply at lower concentrations of surfactant until it reaches to a plateau in contrast to the appearance of maxima in case of CTAB and (CTA)2SO4. Anionic surfactant, sodium dodecyl sulfate (SDS), inhibited the reaction rate at all concentrations used in the study. Pseudophase ion-exchange model was used for analyzing the effect of cationic micelles while the inhibition by SDS micelles was fitted using the Menger–Portnoy model. The effect of salts (NaCl, NaBr and (CH3)4NBr) was also seen on the hydrolysis of indomethacin and it was found that all salts inhibited the rate of reaction. The inhibition followed the trend NaCl < NaBr < (CH3)4NBr.  相似文献   

11.
The effect of cationic micelles of Cetyltrimethyl ammonium bromide (CTAB) on the kinetics of oxidation of dextrose by N-Bromophthalimide were studied at 40°C. The reaction follows fractional-order and first order kinetics, with respect to [dextrose] and [NBP], respectively. CTAB strongly catalyze the reaction, and typical kobs and [CTAB] profile was observed, that is, with a progressive increase in [CTAB], the reaction rate increased, reaches a maximum value then decreased. Results are treated quantitatively in terms of Berezin's Model, which is applicable to bimolecular micellar catalyzed reaction. There is a negative effect of mercuric acetate and phthalimide. The influence of salts on the reaction rates has also been seen. The activation parameters as well as other parameters were calculated and suitable mechanism consistent with the experimental findings has been proposed.  相似文献   

12.
The present work is aimed at studying the interaction between copper-glycyltyrosine [(Cu(II)-Gly-Tyr)]+ and ninhydrin in water and in micelles formed by cetyltrimethylammonium bromide (CTAB) using spectrophometric measurements at 80°C and pH 5.0. The order of reaction remains the same in the two systems, that is, first- and fractional-order kinetics with respect to [Cu(II)-Gly-Tyr]+ and [ninhydrin], respectively, in the excess of ninhydrin over [Cu(II)-Gly-Tyr]+. It was observed that the product formed is same in both the media. The reaction is catalyzed by CTAB, and the maximum rate enhancement is about three fold. Quantitative kinetic analysis of kψ–[CTAB] data was explained in terms of pseudo-phase of the micelles (assuming the association/incorporation of both the reactants at the micellar surface).  相似文献   

13.
The effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) on the interaction of chromium dipeptide complex ([Cr(III)-Gly-Gly]2+) with ninhydrin under varying conditions has been investigated. The rates of the reaction were determined in both water and surfactant micelles in the absence and presence of various organic and inorganic salts at 70 °C and pH 5.0. The reaction followed first- and fractional-order kinetics with respect to [Cr(III)-Gly-Gly2+] and [ninhydrin]. Increase in the total concentration of CTAB from 0 to 40×10−3 mol·dm−3 resulted in an increase in the pseudo-first-order rate constant (kψ) by a factor of ca 3. Quantitative kinetic analysis of kψ−[CTAB] data was performed on the basis of the pseudo-phase model of the micelles. As added salts induce structural changes in micellar systems that may modify the substrate-surfactant interactions, the effect of some inorganic (NaBr, NaCl, Na2 SO4) and organic (NaBenz, NaSal, NaTos) salts on the rate was also explored. It was found that the tightly bound counterions (derived from organic salts) were the most effective.  相似文献   

14.
The kinetics of alkaline hydrolysis of procaine under the pseudo–first‐order condition ([OH?] ? [procaine]) has been carried out. N,N‐Diethylaminoethanol and p‐aminobenzoate anion were obtained as the hydrolysis product. The rate of hydrolysis was found to be linearly dependent upon [NaOH]. The addition of cationic cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DDTAB) and tetradecyltrimethylammonium bromide, and anionic sodium dodecyl sulfate (SDS) micelles inhibited the rate of hydrolysis. The maximum inhibitive effect on the reaction rate was observed for SDS micelles, whereas among the cationic surfactants, CTAB inhibited most. The variation in the rate of hydrolysis of procaine in the micellar media is attributed to the orientation of a reactive molecule to the surfactant and the binding constant of procaine with micelles. The rate of hydrolysis of procaine is negligible in DDTAB micelles. The observed results in the presence of cationic micelles were treated on the basis of the pseudophase ion exchange model. The results obtained in the presence of anionic micelles were treated by the pseudophase model, and the various kinetic parameters were determined. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 45: 1–9, 2013  相似文献   

15.
Iron(III) complexes of tetraamidato macrocyclic ligands (TAMLs), [Fe{4‐XC6H3‐1,2‐(NCOCMe2NCO)2CR2}(OH2)]?, 1 ( 1 a : X=H, R=Me; 1 b : X=COOH, R=Me); 1 c : X=CONH(CH2)2COOH, R=Me; 1 d : CONH(CH2)2NMe2, R=Me; 1 e : X=CONH(CH2)2NMe3+, R=Me; 1 f : X=H, R=F), have been tested as catalysts for the oxidative decolorization of Orange II and Sudan III dyes by hydrogen peroxide and tert‐butyl hydroperoxide in the presence of micelles that are neutral (Triton X‐100), positively charged (cetyltrimethylammonium bromide, CTAB), and negatively charged (sodium dodecyl sulfate, SDS). The previously reported mechanism of catalysis involves the formation of an oxidized intermediate from 1 and ROOH (kI) followed by dye bleaching (kII). The micellar effects on kI and kII have been separately studied and analyzed by using the Berezin pseudophase model of micellar catalysis. The largest micellar acceleration in terms of kI occurs for the 1 a ? tBuOOH? CTAB system. At pH 9.0–10.5 the rate constant kI increased by approximately five times with increasing CTAB concentration and then gradually decreased. There was no acceleration at higher pH, presumably owing to the deprotonation of the axial water ligand of 1 a in this pH range. The kI value was only slightly affected by SDS (in the oxidation of Orange II), but was strongly decelerated by Triton X‐100. No oxidation of the water‐insoluble, hydrophobic dye Sudan III was observed in the presence of the SDS micelles. The kII value was accelerated by cationic CTAB micelles when the hydrophobic primary oxidant tert‐butyl hydroperoxide was used. It is hypothesized that tBuOOH may affect the CTAB micelles and increase the binding of the oxidized catalysts. The tBuOOH? CTAB combination accelerated both of the catalysis steps kI and kII.  相似文献   

16.
Kinetics of the hydrolysis of isoproturon by hydrochloric acid has been studied spectrophotometrically in the absence and the presence of anionic sodium lauryl sulfate (NaLS) micelles. The anionic micelle was found to increase the rate of reaction. The reaction followed first-order kinetics with respect to isoproturon and was linearly dependent upon [HCl]. In both aqueous and micellar pseudophases, the reaction was started with the protonation of the amino group of isoproturon followed by attack of water to yield phenylcarbamic acid and the corresponding amine, thus obeying the addition–elimination mechanism. The surfactant decreased the activation entropy. The binding constant in consistence with the rate constants was evaluated on the basis of pseudophase ion-exchange model. The added salts (NaCl and KCl) decreased the rate of reaction due to the exclusion of H+ from micellar surfaces.  相似文献   

17.
The alkanolysis of ionized phenyl salicylate, PS?, has been studied in the presence and absence of micelles of sodium dodecyl sulphate, SDS, at 0.05 M NaOH, 30 or 32°C and within the alkanol, ROH, (ROH = HOCH2CH2OH and CH3OH) contents of 15–74 or 92%, v/v. The alkanolysis of PS? involves intramolecular general base catalysis. At a constant concentration of SDS, [SDS]T, the observed pseudo first-order rate constants, kobs, for the reactions of ROH with PS? obtained at different concentration of ROH, [ROH]T, obey the relationship: kobs = k[ROH]T/(1 + KA[ROH]T) where k is the apparent second-order rate constant and KA is the association constant for dimerization of ROH molecules. Both k and KA decrease with increase in [SDS]T. At a constant [ROH]T, the rate constants, kobs, show a decrease of nearly 2-fold with increase in [SDS]T from 0.0–0.3M. These results are explained in terms of pseudo-phase model of micelle. The rate constants for alkanolysis of PS? in micellar pseudophase are insignificant compared with the corresponding rate constants in aqueous-alkanol pseudophase. This is attributed largely to considerably low value of [ROH] in the specific micellar environment where micellar bound PS? molecules exist. The increase in [ROH]T decrease the value of the binding constant of PS? with SDS micelle. The effects of anionic micelles on the rates of alkanolysis of PS? are explained in terms of the porous cluster micellar structure.  相似文献   

18.
The kinetics of basic hydrolysis of crystal violet (CV) in CTAB/KBr/C9OH micellar media was investigated under pseudo-first-order conditions. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of CV at 590?nm. It was observed that the pseudo-first-order rate constant increases with increase in C0. The enhancement of reaction rate with C0 is explained on the basis of dependence of reaction rate on micellar morphology. Further, the viscosity and DLS analysis supports nonanol-induced morphological transitions. Fluorescence spectroscopy has been used to understand dye–micelles interactions. The enhancement of fluorescence intensity of CV with C0 suggests an increase in dye–micelles interaction with C0. The concentration of surfactant and salt had a marked effect on reaction rate. The inhibition of reaction rate at high concentration of surfactant and salt is due to the ionic competition of OH? and Br? ions for the reaction center. The influence of [OH?] on CV hydrolysis was also investigated. The results show that the pseudo-first-order rate constant, k’, increases linearly with hydroxide ion concentration, indicating first-order dependence on [OH?].  相似文献   

19.
Kinetics of the oxidation of D ‐fructose by cerium(IV) has been investigated both in the absence and presence of surfactants (cetyltrimethylammonium bromide, CTAB, and sodium dodecyl sulfate, SDS) in sulfuric acid medium. The reaction exhibits first‐order kinetics each in [cerium(IV)] and [D ‐fructose] and inverse first order in [H2SO4]. The Arrhenius equation is found to be valid for the reaction between 30–50°C. A detailed mechanism with the associated reaction kinetics is presented and discussed. While SDS has no effect, CTAB increases the reaction rate with the same kinetic behavior in its presence. The catalytic role of CTAB micelles is discussed in terms of the pseudophase model proposed by Menger and Portnoy. The association constant Ks that equals to 286 mol?1 dm3 is found for the association of cerium(IV) with the positive head group of CTAB micelles. The effect of inorganic electrolytes (Na2SO4, NaNO3, NaCl) has also been studied and discussed. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 18–25, 2006  相似文献   

20.
The title reaction in the presence of cetyltrimethylammonium bromide (CTAB) has been followed spectrophotometrically at 325 nm. In the process of reduction, characteristic surface resonance plasmon absorption peaks appear for the silver nanoparticles (NP) and the intensities increase with reaction time. UV–visible spectra suggest that [CTAB] and glutamic acid influence the morphology of the silver NP and act as shape‐directing agents, whereas [Ag+] has no effect. The effects of the total [glutamic acid], [CTAB], and [Ag+] on the apparent rate constants of silver NP formation are determined. The sigmoidal curve of absorbance versus reaction time indicates an autocatalytic path involved in the growth process. The α‐amino and ? COOH groups undergo chemical transformation (oxidative deamination and decarboxylation). The particles are spherical in shape with average diameters ranging between 12 and 25 nm, and their size distribution is wide. A plausible mechanism has been proposed with the following rate law: (d[silver sol])/dt = k[Ag+][Glutamic acid]T. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 680–691, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号