首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of acid blue 1 from aqueous solution onto carbonaceous substrate produced from the wood of Paulownia tomentosa was investigated. The samples characterized by FTIR, SEM, EDS and XRD techniques, indicated that the surface functional groups like carboxyl, lactones or phenols and ethers have disappeared at high activation temperature (800 ℃) and as a result porous structure was developed that has a positive effect on the adsorption capacity. Bangham and parabolic diffusion models were applied to the kinetic adsorption data, which show that the adsorption of acid blue 1 was a diffusion controlled process. The reaction rate increased with the increase in temperatures of both the adsorption and activation. Thermodynamic parameters like △E^≠, △H^≠, △S^≠ and △G^≠ were calculated from the kinetic data. The negative values of △S^≠ reflected the decrease in the disorder of the system at the solid-solution interface during adsorption. Gibbs free energy (△G^≠), representing the driving force for the affinity of dye for the carbon surface, increased with the increase in sample activation and the adsorption temperatures.  相似文献   

2.
The aerial oxidation kinetics of hydroquinone in a freshly prepared developer solution at different temperatures and pHs has been studied. The activation parameters, Ea, ΔG# , ΔS# , ΔH# and enthalpy of formation of activated complex, ΔHfo(X# ), are determined. The large negative value of free energy of activation ΔG# proves that hydroquinone extremely tends to be oxidized by air at optimum temperature (20℃) and optimum pH (10.5) and converts to the activated complex semiquinone. It was also found that if the pH of the developer solution is increased from 9.3 to 10.5 the reaction rate will increase by a factor of 2.  相似文献   

3.
Kinetic, equilibrium, and thermodynamic studies were performed for the batch adsorption of methylene blue (MB) on the high lime fly ash as a low cost adsorbent material. The studied operating variables were adsorbent amount, contact time, dye concentration, and temperature. The kinetic data were analyzed using the pseudo-first order and pseudo-second order kinetic models and the adsorption kinetic was followed well by the pseudo-second order kinetic model. The equilibrium data were fitted with the Freundlich, Langmuir, and Dubinin Radushkevich (D–R) isotherms and the equilibrium data were found to be well represented by the Freundlich and D–R isotherms. Based on these two isotherms MB is taken by chemical ion exchange and active sites on the high lime fly ash have different affinities to MB molecules. Various thermodynamic parameters such as enthalpy of adsorption (ΔH°), free energy change (ΔG°), and entropy change (ΔS°) were investigated. The positive value of ΔH° and negative value of ΔG° indicate that the adsorption is endothermic and spontaneous. The positive value of ΔS° shows the increased randomness at the solid–liquid interface during the adsorption. A single-stage batch adsorber was also designed based on the Freundlich isotherm for the removal of MB by the high lime fly ash.  相似文献   

4.
Bis-azo-cyanocyclo-pentane, -hexane and -heptane are prepared and the kinetics of their thermolysis in several solvents are studied by differential scanning microcalorimetry. Unlike activation enthalpy and entropy, activation free enthalpy does not depend on solvent. Moreover its variation with temperature is quite small in each kinetic study temperature range. Thus ΔG# is given as an intrinsic stability characteristic of azo-nitriles. “Kinetic compensation effect” between ΔS# and ΔH# is discussed.  相似文献   

5.
In this study activated carbon was used for the removal of thiram from aqueous solutions. Adsorption experiments were carried out as a function of time, initial thiram concentration and temperature. Equilibrium data fitted well to the Freundlich and Langmuir equilibrium models in the studied concentration range. Adsorption kinetics followed a pseudo second‐order kinetic model rather than pseudo first‐order model. The results from kinetic experiments were used to describe the adsorption mechanism. Both boundary layer and intraparticle diffusion played important role in the adsorption mechanism of thiram. Thermodynamic parameters (ΔG0, ΔH0, and ΔS0) were determined and the adsorption process was found to be an endothermic one. The negative values of ΔG0 at different temperatures were indicative of the spontaneity of the adsorption process.  相似文献   

6.
ABSTRACT

This study reports on the adsorption of 2-chlorophenol from an aqueous solution using activated carbon prepared by H2SO4 activation of the pericarp of Ricinus communis (RCAC). The pericarp was carbonized and activated by treating with H2SO4 solution followed by heating in an oven at 105°C for 12 hrs. Batch adsorption experiments were carried out as a function of pH, contact time, initial concentration of the adsorbate, adsorbent dosage and temperature of the solution. Kinetic data were best fit to a pseudo-first-order rate equation for the adsorption of 2-chlorophenol on RCAC. Thermodynamic parameters ΔHo, ΔSo and ΔGo for the adsorption were also determined which shows that adsorption on the surface of RCAC was spontaneous in nature, and exothermic between temperatures of 20°C and 80°C. The equilibrium data better fit the Langmuir isotherm model for 2-chlorophenol adsorption on RCAC. IR spectrum for loaded and unloaded RCAC was obtained and found to be in good agreement.  相似文献   

7.
The effect of temperature of activation on bone charcoal, used as adsorbent for the removal of Patent Blue VF from water solutions was studied. The adsorbent was characterized by FTIR, XRD, SEM and EDS. The kinetic of adsorption of dye was carried out at 10 °C and 45 °C. Carbonization temperature (600–1000 °C) of the adsorbent has significant effect on the removal of dye from water solutions. The first order kinetic, Elovich, Bangham, parabolic diffusion and power function equations were found to fit the kinetic data. Activation energies of adsorption (Δ≠) have higher values for the charcoal activated at high temperatures and the other thermodynamic parameters like ΔH≠, ΔS≠ and ΔG≠ were also found.  相似文献   

8.
Bouabdallah  S.  Trabelsi  H.  Dhia  M. T. Ben  Hamida  N. Ben 《Chromatographia》2012,75(21):1247-1255

The isomerization of perindopril has been investigated using dynamics chromatography and an unified equation introduced by Trapp that was based on stochastic and theoretical plate models to determine the energies. The isomerization rate constants and Gibbs activation energies of isomerization are directly calculated from chromatographic peak parameters, i.e., retention times of the inter-converting species, peak width at half height, and relative plateau height. From the rate constant \( k_{1}^{ue} (T) \), measured at variable temperatures, the kinetic eyring activation parameters ΔG #, ΔH # and ΔS # of isomerization of perindopril were obtained. By variation of the flow rate of the mobile phase, the expected independence of the isomerization barrier from the chromatographic time scale was demonstrated for the first time. The relationships between peak shape and chromatographic conditions, such as flow rate, temperature, pH, organic modifier, and β-cyclodextrin, such as an additive, were investigated. In addition, an NMR investigation on perindopril was described.

  相似文献   

9.
This study investigates the adsorption of Congo red (CR) dye onto corn cob based activated carbon (CCAC) in the batch process. The activated carbon was characterized using FTIR, SEM, and EDX techniques, respectively. The effect of operational parameters such as the initial dye concentration (10–50?mg/L), contact time (5–160 minutes), and solution temperature (30–50°C) were studied. The amount of the CR dye adsorbed was found to increase as these operational parameters increased. Kinetic data for CR dye adsorption onto CCAC were best represented by the pseudo second-order kinetic model. Four different isotherms namely Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models were used to test the adsorption data. It fitted the Langmuir isotherm model most. Thermodynamic parameters such as ΔH0, ΔS0, and ΔG0 were evaluated. The adsorption process was found to be exothermic and spontaneous. The study shows that CCAC is an effective adsorbent for the adsorption of CR dye from aqueous solution.  相似文献   

10.
11.
[RuCl2(NCCH3)2(cod)], an alternative starting material to [RuCl2(cod)] n for the preparation of ruthenium(II) complexes, has been prepared from the polymer compound and isolated in yields up to 87% using a new work-up procedure. The compound has been obtained as a yellow solid without water of crystallization. The complexes [RuCl2(NCR)2(cod)] spontaneously transform into dimers [Ru2Cl(μ-Cl)3(cod)2(NCR)] (R?=?Me, Ph). 1H NMR kinetic experiments for these transformations evidenced first-order behavior. [RuCl2(NCPh)2(cod)] dimerizes slower by a factor of ten than [RuCl2(NCCH3)2(cod)]. The following activation parameters, ΔH #?=?114?±?3?kJ?mol?1 and ΔS #?=?66?±?9?J?K?1?mol?1 for R?=?CH3CN (ΔG #?=?94?±?5?kJ?mol?1, 298.15?K) and ΔH #?=?122?±?2?kJ?mol?1 and ΔS #?=?75?±?6?J?K?1?mol?1 for R?=?Ph (ΔG #?=?100?±?4?kJ?mol?1, 298.15?K), have been calculated from the first-order rate constants in the temperature range 294–323?K. The kinetic parameters are in agreement with a two-step mechanism with dissociation of acetonitrile as the rate-determining step. The molecular structures of [Ru2Cl(μ-Cl)3(cod)2(NCR)] (R?=?Me, Ph) have been determined by X-ray diffraction.  相似文献   

12.
A novel cation exchanger (TFS-CE) having carboxylate functionality was prepared through graft copolymerization of hydroxyethylmethacrylate onto tamarind fruit shell (TFS) in the presence of N,N′-methylenebisacrylamide as a cross-linking agent using K2S2O8/Na2S2O3 initiator system, followed by functionalisation. The TFS-CE was used for the removal of Cu(II) from aqueous solutions. At fixed solid/solution ratio the various factors affecting adsorption such as pH, initial concentration, contact time, and temperature were investigated. Kinetic experiments showed that the amount of Cu(II) adsorbed increased with increase in Cu(II) concentration and equilibrium was attained at 1 h. The kinetics of adsorption follows pseudo-second-order model and the rate constant increases with increase in temperature indicating endothermic nature of adsorption. The Arrhenius and Eyring equations were used to obtain the kinetic parameters such as activation energy (Ea) and enthalpy (ΔH#), entropy (ΔS#) and free energy (ΔG#) of activation for the adsorption process. The value of Ea for adsorption was found to be 10.84 kJ · mol?1 and the adsorption involves diffusion controlled process. The equilibrium data were well fitted to the Langmuir isotherm. The maximum adsorption capacity for Cu(II) was 64 · 10 mg · g?1 at T = 303 K. The thermodynamic parameters such as changes in free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were derived to predict the nature of adsorption process. The isosteric heat of adsorption increases with increase in surface loading indicating some lateral interactions between the adsorbed metal ions.  相似文献   

13.
The kinetic and mechanistic study of Ag(I)‐catalyzed chlorination of linezolid (LNZ) by free available chlorine (FAC) was investigated at environmentally relevant pH 4.0–9.0. Apparent second‐order rate constants decreased with an increase in pH of the reaction mixture. The apparent second‐order rate constant for uncatalyzed reaction, e.g., kapp = 8.15 dm3 mol−1 s−1 at pH 4.0 and kapp. = 0.076 dm3 mol−1 s−1 at pH 9.0 and 25 ± 0.2°C and for Ag(I) catalyzed reaction total apparent second‐order rate constant, e.g., kapp = 51.50 dm3 mol−1 s−1 at pH 4.0 and kapp. = 1.03 dm3 mol−1 s−1 at pH 9.0 and 25 ± 0.2°C. The Ag(I) catalyst accelerates the reaction of LNZ with FAC by 10‐fold. A mechanism involving electrophilic halogenation has been proposed based on the kinetic data and LC/ESI/MS spectra. The influence of temperature on the rate of reaction was studied; the rate constants were found to increase with an increase in temperature. The thermodynamic activation parameters Ea, ΔH#, ΔS#, and ΔG# were evaluated for the reaction and discussed. The influence of catalyst, initially added product, dielectric constant, and ionic strength on the rate of reaction was also investigated. The monochlorinated substituted product along with degraded one was formed by the reaction of LNZ with FAC.  相似文献   

14.
This work aims to assess the adsorption efficiency of date stones biowaste subjected to carbonization and activation processes for the removal of Pb ions from single and mixed solutions. Several techniques have been used for characterization of adsorbents such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), methylene blue index and point of zero charge (pHpzc). An excellent adsorption capacity of 97.43% is achieved at an initial concentration of 300 ?mg/L, solution volume 75 ?mL of Pb nitrate, adsorbent mass of 0.7 ?g, temperature of 30 ?°C, a stirring speed of 500 ?rpm/min, a contact time of 180 ?min and pH 6. Specifically, a comparison has been conducted between carbonized/activated date stones “CADS” and commercial activated carbon “CAC” besides investigating the influence of the presence of Co ions and the utilization of ultrasound radiation. A higher adsorption rate of 98.16% is reached under ultrasound radiation at Pb(II) initial concentration of 100 ?mg/L for a contact time of 3 ?h. Nevertheless, the temperature has shown a negative effect; the adsorption rate decreases from 98.31% at 18 ?°C to 92.70% at 60 ?°C. The modeling of the experimental adsorption data manifests a type-L isotherm characteristic of Langmuir and Freundlich models. The kinetic study has shown that the experimental data are well described by a pseudo-second-order rate model and controlled by the internal diffusion, a limiting-step that controls the transfer rate of Pb(II) to the adsorbent surface. The calculated thermodynamic parameters (ΔG0, ΔH0, ΔS0) indicate that the adsorption of Pb(II) is spontaneous and exothermic process.  相似文献   

15.
A detailed kinetic study of the reaction of toluidine blue (tolonium chloride) (TB+ Cl?) with thiourea (TU) in aqueous hydrochloric acid solution is reported. The reaction was first order with respect to toluidine blue and the reductant and second order with respect to [H+]. Thiourea had a 2:1 stoichiometric ratio with TB+. Toluidine blue was reduced to a colorless base in two one-electron reduction steps and TU was oxidized to thioformamidinium ion, which dimerized rapidly to give stable dithioformamidinium ion. The energy parameters obtained for TB+-TU reaction were mean energy of activation (Ea′) = 26.7 ± 2.4 kJ M?1; enthalpy of activation (ΔH#) = 24.2 kJ M?1; frequency factor (A) = 1.04 × 104 M?3 s?1; and entropy of activation (ΔS#) = ?176.35 J M?1 s?1. © John Wiley & Sons, Inc.  相似文献   

16.
The thermal decomposition reaction of acetone cyclic diperoxide (3,3,6,6‐tetramethyl‐1,2,4,5‐tetroxane, ACDP), in the temperature range of 130.0–166.0°C and initial concentrations range of 0.4–3.1 × 10?2 mol kg?1 has been studied in methyl t‐butyl ether solution. The thermolysis follows first‐order kinetic laws up to at least ca 60% ACDP conversion. Under the experimental conditions, the activation parameters of the initial step of the reaction (ΔH# = 33.6 ± 1.1 kcal mol?1; ΔS# = ?4.1 ± 0.7 cal mol?1 K?1; ΔG# = 35.0 ± 1.1 kcal mol?1) and acetone, as the only organic product, support a stepwise reaction mechanism with the homolytic rupture of one of its peroxidic bond. Also, participation of solvent molecules in the reaction is postulated given an intermediate diradical, which further decomposes by C? O bond ruptures, yielding a stoichiometric amount of acetone (2 mol per mole of ACDP decomposed). The results are compared with those obtained for the above diperoxide thermolysis in other solvents. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 302–307, 2004  相似文献   

17.
In this study, biosorption of cobalt(II), chromium(III), cadmium(II), and lead(II) ions from aqueous solution was studied using the algae nonliving biomass (Neochloris pseudoalveolaris, Np) as natural and biological sorbents. The effect of pH, contact time, temperature, and metal concentration on the adsorption capacity of metal ions was investigated. The maximum adsorption capacities for Co(II), Cr(II), Cd(II), and Pb(II) were found to be 20.1, 9.73, 51.4 and 96.2 mg/g at the optimum conditions, respectively. The experiments showed that when pH increased, an increase in the adsorption capacity of the biomass was observed too. The kinetic results of adsorption obeyed a pseudo second-order model. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data of metal ions adsorption and the value of R L for Pb(II), Cb,(II), Co(II), and Cr(III) was found to be 0.376, 0271, 0872, and 096, respectively. The thermodynamic parameters related to the adsorption process such as E a , ΔG 0, ΔH 0, and ΔS 0 were calculated. ΔH 0 values (positive) showed that the adsorption mechanism was endothermic. Weber-Morris and Urano-Tachikawa diffusion models were also applied to experimental equilibrium data. The algae biomass was effectively used as a sorbent for the removal of metal ions from aqueous solutions.  相似文献   

18.
This work reports the results of a kinetic and mechanistic investigations of the addition reaction of triphenylphosphine to para‐naphtoquinone in 1,2‐dichloromethane as solvent. The order of reaction with respect to the reactants was determined using initial rate method, and the rate constant was obtained on the basis of pseudo‐first‐order method. Variable time method using Uv–Vis spectrophotometry (at 400 nm) was utilized for monitoring this addition reaction, for which the following Arrhenius equation was obtained: The resulting activation parameters Ea, ΔH#, ΔG#, and ΔS# at 300 K were 13.63, 14.42, 18.75 kcal mol?1, and ?14.54 cal mol?1K?1, respectively. The results suggest that the reaction is first order with respect to both triphenylphosphine and para‐naphthoquinone. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 427–433, 2005  相似文献   

19.
Solid-gas phase transition processes of some triazines were studied from kinetic and thermodynamic viewpoint. DSC measurements and Clausius-Clapeyron equation were used to determine enthalpy values related to these processes. Model-fitting methods (based on Arrhenius, Šatava equations and Šesták-Berggren equations) and model-free methods (based on Ozawa-Flynn-Wall and Kissinger equations) allow to hypothesis R2 mechanism. An attempt to determine the activation parameters (ΔH #, ΔG #, ΔS #) related to these processes was carried out. Accordance between the activation enthalpy values with those of activation energy obtained by means of kinetic methods and with the experimental (DSC) and calculated (Clausius-Clapeyron) enthalpy values was found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
In present study adsorption capacity of waste materials of Daucus carota plant (carrot stem powder: CSP and carrot leaves powder: CLP) was explored for the removal of methylene blue (MB) malachite green (MG) dye from water. The morphology and functional groups present were investigated by scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy. The operating variables studied were pH, adsorbent dose, ionic strength, initial dye concentration, contact time and temperature. Equilibrium data were analysed using Langmuir and Freundlich isotherm models and monolayer adsorption capacity of adsorbents were calculated. Kinetic data were studied using pseudo-first and pseudo-second order kinetic models and the mechanism of adsorption was described by intraparticle diffusion model.Various thermodynamic parameters such as enthalpy of adsorption ΔH°, free energy change ΔG° and entropy ΔS° were estimated. Negative value of ΔH° and negative values of ΔG° showed that the adsorption process was exothermic and spontaneous. Negative value of entropy ΔS° showed the decreased randomness at the solid–liquid interface during the adsorption of MB and MG onto CSP and CLP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号