首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The crossing numbers of Cartesian products of paths, cycles or stars with all graphs of order at most four are known. The crossing numbers of GC n for some graphs G on five and six vertices and the cycle C n are also given. In this paper, we extend these results by determining the crossing number of the Cartesian product GC n , where G is a specific graph on six vertices.  相似文献   

2.
 There are several known exact results on the crossing numbers of Cartesian products of paths or cycles with “small” graphs. In this paper we extend these results to the Cartesian products of two specific 5-vertex graphs with the star K 1, n . In addition, we give the crossing number of the graph obtained by adding two edges to the graph K 1,4, n in such a way that these new edges join a vertex of degree n+1 of the graph K 1,4, n with two its vertices of the same degree. Received: December 8, 1997 Final version received: August 14, 1998  相似文献   

3.
Most results on the crossing number of a graph focus on the special graphs, such as Cartesian products of small graphs with paths Pn, cycles Cn or stars Sn. In this paper, we extend the results to Cartesian products of complete bipartite graphs K2,m with paths Pn for arbitrary m ≥ 2 and n ≥ 1. Supported by the NSFC (No. 10771062) and the program for New Century Excellent Talents in University.  相似文献   

4.
Most results on crossing numbers of graphs focus on some special graphs, such as the Cartesian products of small graphs with path, star and cycle. In this paper, we obtain the crossing number formula of Cartesian products of wheel Wm with path Pn, for arbitrary m ≥ 3 and n≥ 1.  相似文献   

5.
6.
In this paper we introduce the concept of fair reception of a graph which is related to its domination number. We prove that all graphs G with a fair reception of size γ(G) satisfy Vizing's conjecture on the domination number of Cartesian product graphs, by which we extend the well‐known result of Barcalkin and German concerning decomposable graphs. Combining our concept with a result of Aharoni, Berger and Ziv, we obtain an alternative proof of the theorem of Aharoni and Szabó that chordal graphs satisfy Vizing's conjecture. A new infinite family of graphs that satisfy Vizing's conjecture is also presented. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 45‐54, 2009  相似文献   

7.
We characterize the (weak) Cartesian products of trees among median graphs by a forbidden 5-vertex convex subgraph. The number of tree factors (if finite) is half the length of a largest isometric cycle. Then a characterization of Cartesian products of n trees obtains in terms of isometric cycles and intervals. Finally we investigate to what extent the proper intervals determine the product structure. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
In this paper we characterize the convex dominating sets in the composition and Cartesian product of two connected graphs. The concepts of clique dominating set and clique domination number of a graph are defined. It is shown that the convex domination number of a composition G[H] of two non-complete connected graphs G and H is equal to the clique domination number of G. The convex domination number of the Cartesian product of two connected graphs is related to the convex domination numbers of the graphs involved.  相似文献   

9.
Crossing numbers of graphs are in general very difficult to compute. There are several known exact results on the crossing number of the Cartesian products of paths, cycles or stars with small graphs. In this paper we study cr(KmPn), the crossing number of the Cartesian product KmPn. We prove that for m ≥ 3,n ≥ 1 and cr(KmPn)≥ (n − 1)cr(Km+2e) + 2cr(Km+1). For m≤ 5, according to Klešč, Jendrol and Ščerbová, the equality holds. In this paper, we also prove that the equality holds for m = 6, i.e., cr(K6Pn) = 15n + 3. Research supported by NFSC (60373096, 60573022).  相似文献   

10.
In this paper we examine the classes of graphs whose Kn-complements are trees or quasi-threshold graphs and derive formulas for their number of spanning trees; for a subgraph H of Kn, the Kn-complement of H is the graph KnH which is obtained from Kn by removing the edges of H. Our proofs are based on the complement spanning-tree matrix theorem, which expresses the number of spanning trees of a graph as a function of the determinant of a matrix that can be easily constructed from the adjacency relation of the graph. Our results generalize previous results and extend the family of graphs of the form KnH admitting formulas for the number of their spanning trees.Final version received: March 18, 2004  相似文献   

11.
借助拉链积运算,Cartesian积图K(1,m)□Pn和K(2,m)□Pn的交叉数最近被先后确定.本文进一步证明了:对于m,n≧1,有cr(K(1,1,m)□Pn)=2n[m/2][(m-1)/2]+(n-1)[m/2].结论的证明基于Bokal关于树的Cartesian积图交叉数的有关结果.另外,我们也给出了确定K(2,m)□Pn交叉数的一个简洁方法.  相似文献   

12.
The prism over a graph G is the Cartesian product GK2 of G with the complete graph K2. If G is hamiltonian, then GK2 is also hamiltonian but the converse does not hold in general. Having a hamiltonian prism is shown to be an interesting relaxation of being hamiltonian. In this article, we examine classical problems on hamiltonicity of graphs in the context of having a hamiltonian prism. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 249–269, 2007  相似文献   

13.
A set of vertices S resolves a connected graph G if every vertex is uniquely determined by its vector of distances to the vertices in S. The metric dimension of a graph G is the minimum cardinality of a resolving set. In this paper we undertake the metric dimension of infinite locally finite graphs, i.e., those infinite graphs such that all its vertices have finite degree. We give some necessary conditions for an infinite graph to have finite metric dimension and characterize infinite trees with finite metric dimension. We also establish some general results about the metric dimension of the Cartesian product of finite and infinite graphs, and obtain the metric dimension of the Cartesian product of several families of graphs.  相似文献   

14.
We investigate vector chromatic number (χ vec ), Lovász V-function of the complement \((\bar \vartheta )\), and quantum chromatic number (χ q ) from the perspective of graph homomorphisms. We prove an analog of Sabidussi's theorem for each of these parameters, i.e., that for each of the parameters, the value on the Cartesian product of graphs is equal to the maximum of the values on the factors. Interestingly, as a consequence of this result for \(\bar \vartheta\), we obtain analog of Hedetniemi's conjecture, i.e., that the value of \(\bar \vartheta\) on the categorical product of graphs is equal to the minimum of its values on the factors. We conjecture that the analogous results hold for vector and quantum chromatic number, and we prove that this is the case for some special classes of graphs.  相似文献   

15.
In this article, we will determine the crossing number of the complete tripartite graphs K1,3,n and K2,3,n. Our proof depends on Kleitman's results for the complete bipartite graphs [D. J. Kleitman, The crossing number of K5,n. J. Combinatorial Theory 9 (1970) 315-323].  相似文献   

16.
We show that if a graph has maximum degree d and crossing number k, its rectilinear crossing number is at most O(dk2). Hence for graphs of bounded degree, the crossing number and the rectilinear crossing number are bounded as functions of one another. We also obtain a generalization of Tutte's theorem on convex embeddings of 3-connected plane graphs. © 1929 John Wiley & Sons, Inc.  相似文献   

17.
In this paper, we show that the projective plane crossing number of the graphs C3 × Cn is n - 1 for n ≤ 5 and 2 for n = 4. As far as we can tell from the literature, this is the first infinite family of graphs whose crossing number is known on a single surface other than the plane. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
The size‐Ramsey number of a graph G is the minimum number of edges in a graph H such that every 2‐edge‐coloring of H yields a monochromatic copy of G. Size‐Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs. We initiate the study of size‐Ramsey numbers for k‐uniform hypergraphs. Analogous to the graph case, we consider the size‐Ramsey number of cliques, paths, trees, and bounded degree hypergraphs. Our results suggest that size‐Ramsey numbers for hypergraphs are extremely difficult to determine, and many open problems remain.  相似文献   

19.
The Padmakar-Ivan (PI) index of a graph G is the sum over all edges uv of G of the number of edges which are not equidistant from u and v. In this paper, the notion of vertex PI index of a graph is introduced. We apply this notion to compute an exact expression for the PI index of Cartesian product of graphs. This extends a result by Klavzar [On the PI index: PI-partitions and Cartesian product graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 573-586] for bipartite graphs. Some important properties of vertex PI index are also investigated.  相似文献   

20.
A generalization of the Prüfer coding of trees is given providing a natural correspondence between the set of codes of spanning trees of a graph and the set of codes of spanning trees of theextension of the graph. This correspondence prompts us to introduce and to investigate a notion ofthe spanning tree volume of a graph and provides a simple relation between the volumes of a graph and its extension (and in particular a simple relation between the spanning tree numbers of a graph and its uniform extension). These results can be used to obtain simple purely combinatorial proofs of many previous results obtained by the Matrix-tree theorem on the number of spanning trees of a graph. The results also make it possible to construct graphs with the maximal number of spanning trees in some classes of graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号