首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A highly simple and sensitive kinetic spectrofluorometric method was developed for the determination of thioctic acid. The method is based on the oxidation of the studied drug with cerium(IV) ammonium sulfate in acidic medium. The fluorescence of the produced Ce(III) was measured at 365 nm after excitation at 255 nm. The different experimental parameters affecting the development and stability of the reaction product were carefully studied and optimized. The method is applicable over the concentration range of 0.02 to 0.12 μg/mL with a detection limit of 6.06 × 10?3 μg/mL and a quantification limit of 0.02 μg/mL. The method was successfully applied for the assay of the studied drug in pharmaceutical formulations. The results obtained were in good agreement with those obtained with the reference method.  相似文献   

2.
A new spectrophotometric method was developed for the determination of aminomethylbenzoic acid (PAMBA) using 7,7,8,8‐tetracyanoquinodimethane (TCNQ). The method was based on the formation of charge transfer (CT) complex of this drug as n‐electron donor with the π‐acceptor TCNQ. TCNQ was found to react with PAMBA to produce a kind of yellow complex. The CT reaction proceeded quantitatively in pH 8.5 buffer solution. Different variables affecting the reaction were carefully studied and optimized. Under optimal reaction conditions, the stoichiometric ratio of the reaction, maximum absorption wavelength and the value of molar absorptivity were measured to be 1:1, 425 nm, and 1.9×104 L·mol?1·cm?1, respectively. Beer′s law was obeyed in the range of 1–9 µg·mL?1 of PAMBA. The data have been filled to a linear regression equation A=?0.2612+0.1123c (µg·mL?1), with a correlation coefficient of 0.9996. The detection limit was 0.4 µg·mL?1, R.S.D. was less than 1.9%, and average recovery was over 97.6%. The formation of the CT complex was also confirmed by both infrared and 1H NMR measurements. The thermodynamic property, kinetic property and reaction mechanism have also been discussed. The method developed was applied successfully to the determination of the subject drug in its pharmaceutical dosage forms with good precision and accuracy compared to official method revealed by t‐ and F‐tests.  相似文献   

3.
A simple, precise and sensitive spectrofluorimetric method was developed for the determination of cephradine in pharmaceutical formulations. The method is based on reaction of cephradine with ethyl acetoacetate (EAA) in the presence of formaldehyde in acidic media. The fluorescence intensity of the resultant fluorescent derivative was measured at 443 nm after excitation at 350 nm. The effects of various experimental parameters on the formation of the fluorescent product were studied and optimized. A linear relationship between concentration of cephradine and fluorescence intensity was found over the range of 0.1–5.0 μg/mL. The limit of detection and quantification were calculated an found 1.09 × 10?2 ± 3.64 × 10?3 μg/mL and 3.64 × 10?2 ± 3.64 × 10?3 μg/mL, respectively and with relative standard deviation (RSD) 4.14%. Accuracy of the method was checked by standard addition method and applied to four different commercial formulations. The percentage recovery was found in the range of 97.03 to 103.80% for Velora suspension, 98.16 to 102.90% for velocef injection, 99.00 to 108.10% for Velora capsule and 99.06 to 104.90% for Cefradin capsule. The good percentage recoveries from all samples indicated that there were no interferences from the common excipients of formulations. The proposed method was successfully applied to the analysis of commercial suspension, capsule and injections. The result obtained by the proposed method was statistically validated with reference HPLC method. No significant difference in the results of the two methods was found regarding accuracy and precision using Student’s t-test and the variance ratio F-test.  相似文献   

4.
《Analytical letters》2012,45(7):1337-1348
Abstract

A colorimetric method for the determination of ampicillin (Amp.) and 6-aminopenicillanic acid (6-APA) are described, based on the reaction of these drugs with acenaphthenequinone in basic media to give a highly intense red coloured product. The latter exhibits an absorption maximum at 610 nm with apparent molar absorptivities of 2.83 and 1.45 × 104 l. mol?1 cm?1 and Sandell sensitivities of 0.013 and 0.015 μg cm?2 for Amp. and 6-APA, respectively. The optimum concentration ranges are 0.4-10 and 0.4-14 μg ml?1 for Amp. and 6-APA, respectively. For more accurate results, Ringbom optimum concentration ranges are 1–8.5 and 1–12 μg ml?1 for Amp. and 6-APA, respectively. Statistical analysis indicated that there was no significant difference between the results obtained by the described method and those of the official methods. The mean recoveries percentage were found to be 99.5 × 1.1% for pharmaceutical formulations and 99.1 × 1.6% for serum and urine samples. The method is selective for the determination of Amp. or 6-APA in the presence of their degradation products, additives and excipiences that are normally encountered in dosage forms. The proposed method was applied successfully to the determination of Amp. in pharmaceutical formulations. Also, applicability of the proposed method to human serum and urine is presented and the validity assessed by applying the standard addition technique.  相似文献   

5.
The adsorptive stripping voltammetry of telmisartan was investigated with a hanging mercury drop electrode. This compound produced a catalytic hydrogen wave at ?1.5 V in Britton Robinson buffer of pH 10.38, and the peak current increased with adsorptive accumulation at the electrode. Adsorptive stripping voltammetry with the catalytic hydrogen wave could provide a sensitive novel method for the determination of telmisartan. Various chemical and instrumental parameters affecting the monitored electroanalytical response were investigated and optimized for telmisartan determination. Under these optimized conditions the square-wave adsorptive stripping voltammetric (SW-AdSV) peak current showed a linear dependence on drug concentration over the range 0.05–3.00 μg/mL (1 × 10?7?6 × 10?6 M) (r = 0.999) with accumulation for 120 s at ?1.0 V vs. Ag/AgCl. The proposed electrochemical procedure was successfully applied for the determination of telmisartan in pharmaceutical tablets and human plasma. The results of the developed SW-AdSV method were comparable with those obtained by reported analytical procedures.  相似文献   

6.
《Analytical letters》2012,45(15):2679-2689
Abstract

A direct and simple first derivative spectrophotometric method has been developed for the determination of mefenamic acid and paracetamol in pharmaceutical formulations. A methanolic hydrochloric acid solution was used as solvent for extracting the drugs from the formulations and subsequently the samples were evaluated directly by derivative spectrophotometry. Simultaneous determination of both drugs can be carried out using the zero-crossing and the graphical methods. The methods do not require simultaneous equations to be solved. The calibration graphs were linear in the ranges from 1.8 × 10?6 to 1.6 × 10?4 M of mefenamic acid and from 4.1×10?6 to 1.4 × 10?4 M of paracetamol. The ingredients commonly found in commercial pharmaceutical formulations do not interfere. The proposed method was applied to the determination of these drugs in tablets.  相似文献   

7.
A novel simple method to determine paracetamol with good selectivity has been established by using sodium nitroprusside as the chromogenic reagent. The experiment indicates that sodium nitroprusside can react with paracetamol in a basic solution to form a product with colored O-nitrosamines. The maximal absorption wavelength (λmax) and the apparent molar absorption coefficient of the product are 700 nm and 3.4 × 103 L/mol cm, respectively. A Good linear relationship is obtained between the absorbance and the concentration of paracetamol in a wide range of 0.19–96 μg/mL. The linear regression equation is A = 0.01695 + 0.02240C (μg/mL), with a correlation coefficient of 0.9993. The detection limit (3σ/κ) is 0.10 μg/mL, and the relative standard deviation (RSD) is 0.90% (n = 11). The parameters with regard to determination are optimized, and the reaction mechanism is discussed. The method has been successfully applied to the selective determination of paracetamol in pharmaceutical and biological samples.  相似文献   

8.
Simple, sensitive, rapid and cost effective extraction spectrophotometric methods are described for the assay of mebeverine hydrochloride (MBH) in bulk samples and pharmaceutical formulations. These two methods (Bromophenol blue and Erichrome Black‐T) are based on the formation of chloroform soluble ion‐pair complexes of MBH with Bromophenol blue (BPB) and with Erichrome Black‐T (EBT), to form yellow and pink colored chromogen in a Glycine‐HCl buffer of pH 2.4 (BPB) and in a KCl‐HCl buffer of pH 1.4 (EBT) with absorbance maximum at 416 nm and at 524 nm for BPB and EBT respectively. The calibration graph is found to linear over 0.2–20 μg/mL (BPB) and 0.2–20 μg/mL (EBT), with molar absorptivity values of 1.8295 × 104 1 moL?1 cm?1 and 1.5896 × 104 1 moL?1 cm?1, respectively. The LOD (Limit of Detection) were found to be 0.090 μg/mL and 0.084 μg/mL and LOQ (Limit of Quantification) were 0.2997 μg/mL and 0.2730 μg/mL for the BPB and EBT method, respectively. The results of analysis for the two methods have been validated statistically and by recovery studies. The results are compared with those obtained with reported method. The proposed methods are simple, sensitive, accurate and suitable for quality control applications.  相似文献   

9.
An application of the flow differential pulse voltammetry with tubular detector based on silver solid amalgam for determination of antineoplastic drug lomustine in pharmaceutical preparations is presented. The highest sensitivity was obtained in [0.10 mol dm?3 MES; 2.00 mol dm?3 NaCl; pH 6.0]:EtOH (9 : 1) with flow rate 0.50 mL min?1, and the magnitude of the modulation amplitude ?0.070 V. The calibration dependence was linear in the range 1×10?6–1 × 10?4 mol dm?3 (R2=0.999). The limit of detection was 1.5×10?7 mol dm?3. This method was successfully used for determination of lomustine in real samples of chemotherapy drug CeeNU Lomustine 40 mg.  相似文献   

10.
A spectrophotometric method for the selective determination of antimony (III) and (V) in antileishmanial drugs is described. The procedure is based on the reaction of Sb(III) with bromopyrogallol red (BPR) in neutral solution. As a consequence of the Sb-BPR complex formed, the absorbance of BPR, at 560 nm, decreases proportionally to the amount of Sb(III) in the analyte solution. The calculated apparent molar absorptivity and determination limits are 3.67 × 104 L?·?cm–1?·?mol–1 and 1.65 × 10–6 mol/L, respectively. Sb(V) is determined after reduction to Sb(III) by iodide. The Sb(V) content determined in ten samples of Glucantime varied from 75.40 ± 0.97 to 94.47 ± 1.0 mg/mL. Sb(III) was detected in all samples analyzed, and mean values ranged from 5.19 ± 0.16 to 10.52 ± 0.15 mg/mL. The method is suitable for the routine quality control of pharmaceutical formulations.  相似文献   

11.
The present work describes a rapid and accurate amperometric technique for the determination of acetaminophen (ACT) in pharmaceutical preparations and human blood serum, based on electrocatalytic oxidation of ACT at a glassy carbon electrode modified by cadmium pentacyanonitrosylferrate (CdPCNF) film. The electrocatalytic response of the modified GC electrode was linear over the concentration of 1.64-52.90 μM. The limit of detection was found to be 2.04 μM by amperometric technique. The method was successfully utilized for the determination of ACT in various pharmaceutical preparations and the results have been statistically compared with those obtained by the official method. The interference of some pharmaceutical and biological compounds was investigated. The results of interference study showed that the Nafion-coated CdPCNF|GC electrode can be utilized as a selective amperometric sensor for acetaminophen determination in human blood serum. The mean value of rate constant k for catalytic reaction, and the diffusion coefficient of ACT (D) in the phosphate buffer solution of pH 7.2 were found to be 4.27 × 102 M?1 s?1, and (4.25 ± 0.33) × 10?6 cm2 s?1, respectively.  相似文献   

12.
A new, selective and accurate direct spectrophotometric procedure was developed for the determination of L-ascorbic acid (AA) in pharmaceuticals. Background correction was based on the oxidation of AA by potassium peroxodisulfate in the presence of Cu(II) as a catalyst. The molar absorptivity of the proposed procedure was 1.04 × 104 L/(mol cm) at 262 nm. Beer’s law was obeyed in the concentration range of 0.68–16.00 μg/mL for AA. The detection limit was 0.20 μg/mL, and the relative standard deviation was 0.91% (n = 7) for 8.00 μg/mL AA. Other compounds commonly found in pharmaceutical preparations did not interfere with the detection of AA. The proposed procedure was successfully applied to the determination of AA in pharmaceuticals, and the results obtained agreed with those obtained by iodine titration.  相似文献   

13.
A simple and sensitive adsorptive- differential pulse- voltammetric method for the determination of flufenamic acid (FFA) is presented. The method is based on the preconcentration of FFA on carbon paste electrodes modified in situ with cationic surfactants, dodecyltrimethylammonium chloride (DTAC) or cetyltrimethylammonium chloride (CTAC), at submicellar concentrations. The best results were obtained with DTAC-modified electrodes. After optimization, with these electrodes and using an accumulation step at 0 V for 3 minutes in 0.1 M phosphate solutions pH 7, the peak current of the main oxidation process of FFA varies linearly with its concentration from 1×10−9 M to 5×10−5 M, with a limit of detection of 0.64 nM (0.2 ng/mL). The proposed method has been applied to the determination of FFA in spiked serum samples, treated with acetonitrile to separate the proteins. In the concentration range studied (3 μM to 65 μM) the recovery was near 100 % and the lowest concentration attainable in these samples is below 3 μM (0.8 ppm).  相似文献   

14.
The optimal conditions of the formation and extraction of mefenamic acid ion associates with the astrafloxin polymethine dye are studied. The extraction of ion associates with isooctane-dichloroethane mixtures attains a maximum at pH 9–11 and dye concentration of (5–7) × 10?5 M. The Beer law is fulfilled in the range 2.0–21.0 μg/mL; the detection limit for mefenamic acid is 0.72 μg/mL. A method is developed for the extraction-spectrophotometric determination of mefenamic acid in pharmaceutical preparations.  相似文献   

15.
A new extraction flotation spectrum method for indirect determination of trace amounts of sulfide by ammonium sulfate‐ethanol‐water system was developed. It showed that Cu(II) could combine with S2? into precipitate (CuS) which was floated in the surface of ethanol and water in the presence of ammonium sulfate. The sulfide can be indirectly determined by determining the flotation yield of Cu(II). The linear range from 2.4 × 10?8to 3.2 × 10?6g/mL and the detect limit of 2.0 × 10?8g/mL was achieved. The results showed the determination of S2? was not affected by Pb(II), Zn(II), Cd(II), Fe(II), Co(II),Ni(II), Mn(II) and Cl?, Br?, I?, etc. In the paper, the method was successfully applied to the determination of a trace amount of sulfide in polluted water samples with the advantages of simplicity of equipment, rapidity, low cost, etc.  相似文献   

16.
A cobalt oxide nanoparticles (Co3O4NPs) and multi walled carbon nanotubes (MWCNTs) modified carbon paste electrodes were used to study the electrochemical behavior of linagliptin and empagliflozin in Britton Robinson buffer solution of pH 8.0 using cyclic and square wave voltammetry. The above mentioned modified electrodes showed highly sensitive sensing and gave an excellent anodic response for both drugs. The peak current varied linearly over the concentration ranges: 3.98×10?5–1.53×10?3 mol L?1 (18.82–723.00 μg/mL) and 7.94×10?6–1.07×10?4 mol L?1 (3.65–48.25 μg/mL) with determination coefficients of 0.9999 and 0.9998 for linagliptin and empagliflozin, respectively. The recoveries and relative standard deviations were found in the following ranges: 98.80 %–102.00 % and 0.23 %–1.90 % for linagliptin and 98.30 %–101.80 % and 0.11 %–1.86 % for empagliflozin. The detection and quantification limits were 1.13×10?5 and 3.76×10?5 mol L?1 (5.34and17.77 μg/mL) for linagliptin, 1.71×10?6and 5.68×10?6 mol L?1 (0.77 and 2.56 μg/mL) for empagliflozin. The proposed sensors have been successfully applied for the determination of the drugs in bulk, pharmaceutical formulations and biological fluids.  相似文献   

17.
The present study describes three simple and sensitive spectrophotometric methods developed for the determination of linezolid (LZD) in pure and tablet forms. These methods are based on the oxidation of LZD by ferric chloride in the presence of 1,10-phenanthroline (method A), or 2,2′-bipyridyl (method B), or potassium ferricyanide (method C). The colored complexes were measured at 510, 522 and 758 nm for methods A, B and C, respectively. In all the methods, the absorbance is found to increase linearly with increasing LZD concentration. Beer’s law is obeyed over the concentration ranges of 0.5–6.0, 0.5–9.0 and 1.0–9.0 μg/mL for methods A, B and C, respectively. The calculated molar absorptivity values are 5.8 × 104, 3.6 × 104 and 4.8 × 104 L/mol cm for methods A, B and C, respectively, and the corresponding Sandell’s sensitivities are 5.8 × 10?3, 9.8 × 10?3 and 7 × 10?3 μg/cm2, respectively. The developed methods are applied successfully to the determination of LZD in the pharmaceutical formulations and the results tallied well with label claims.  相似文献   

18.
The aim of this work is to develop cheap, safe, rapid, reliable and reproducible spectrophotometric method for the assay of some antiulcerative drugs namely Omedar, Nadine and Rantag in their pharmaceutical dosages, using methyl red (MR) as a chromogenic reagent. The proposed method is based on the reaction of each of the three drugs with MR at pH 3.0. The optimum analytical variables have been investigated carefully. The maximum absorbance was obtained at 405 nm with absorptivity of 1.35 × 104 L/mol cm. Beer’s law is obeyed in the range of concentration of 0.5–15 μg/mL for ranitidine (active ingredient) content in the studied drugs. The limits of detection and quantification of the drug active ingredient were 0.05 and 0.13 μg/mL, respectively, with a linear regression correlation coefficient of 0.998, and recovery was in the range 99.91–100.48%. Effects of pH, temperature, standing time and MR concentration on the determination of ranitidine hydrochloride of the drugs have been examined. This method is simple and can be used for the determination of ranitidine in the pharmaceutical dosages of antiulcerative drugs.  相似文献   

19.
A comparison between C18 silica and multi‐walled carbon nanotubes (MWCNTs) in the extraction of Chlorpyrifos and Phosalone in environmental water samples was carried out using HPLC. Parameters affecting the extraction were type and volume of elution solvent, pH and flow rate of sample through the adsorbent. The optimum conditions obtained by C18 cartridge for adsorption of these pesticides were 4 mL dichloromethane as elution solvent, sample pH of 5, flow rate of 1 mL/min, and those for MWCNT cartridge were 3 mL dichloromethane, pH of 5 and flow rate of 10 mL/min, respectively. Optimized mobile phase for separation and determination of these compounds by HPLC was methanol/water (80:20 v/v) with pH=5 (adjusted with phosphate buffer). Under optimal chromatographic and SPE conditions, LOD, linear range and precision (RSD n=8) were 3.03×10?3, 0.01–5.00 μg/mL and 2.7% for Chlorpyrifos and 4.03×10?4, 0.01–5.00 μg/mL and 2.3% for Phosalone, in C18 cartridge, respectively. These values for MWCNT were 4.02×10?6, 0.001–0.500 μg/mL and 1.8% for Chlorpyrifos and 1.02×10?6, 0.001–0.500 μg/mL and 1.5% for Phosalone, respectively.  相似文献   

20.
A highly sensitive fluorimetric method was developed for the determination of itraconazole in pharmaceutical preparations and biological fluids. The proposed method is based on measuring the native fluorescence intensity of itraconazole in methanol at 380 nm after excitation at 260 nm. The fluorescence intensity‐concentration plot was rectilinear over the range 0.2 to 2.0 μg/mL with a lower detection limit of 0.05 μg/mL (6.52 × 10?11 M). The method was further applied to the determination of itraconazole in capsules and spiked human plasma, the mean % recoveries (n = 4) was 100.37 ± 0.86 and 95.47 ± 2.93, respectively. The mean % recoveries were in agreement with those obtained from a reference method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号