首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A validated kinetic spectrophotometric method has been developed for the determination of losartan potassium in pure and dosage forms. The method is based on oxidation of the losartan potassium with alkaline potassium permanganate at room temperature (25 ± 1 °C). The reaction is followed spectrophotometrically by measuring the increase in absorbance with time at 603 nm, and the initial rate, fixed time (at 12.0 min) and equilibrium time (at 90.0 min) methods are adopted for constructing the calibration graphs. All the calibration graphs are linear in the concentration range of 7.5–60.0 μg mL?1 and the calibration data resulted in the linear regression equations of n? = ?6.422 × 10?7 + 1.173 × 10?5 C, A =3.30 × 10?4 + 5.28 × 10?3 C and A = ?2.09 × 10?2 + 1.05 × 10?1 C for initial‐rate, fixed time and equilibrium time methods, respectively. The limits of detection for initial rate, fixed time and equilibrium time methods are 0.71, 0.21 and 0.19 μg mL?1, respectively. The activation parameters such as Ea, ΔH?, ΔS?, and ΔG? are also determined for the reaction and found to be 87.34 KJ mol?1, 84.86 KJ mol?1, 50.96 JK?1 mol?1 and ?15.10 KJ mol?1, respectively. The variables are optimized and the proposed methods are validated as per ICH guidelines. The method has been applied successfully to the estimation of losartan potassium in commercial tablets. The performance of the proposed methods was judged by calculating paired t‐ and F‐ values. The analytical results of the proposed methods when compared with those of the reference method show no significant difference in accuracy and precision and have acceptable bias.  相似文献   

2.
Two simple, sensitive and economical spectrophotometric methods have been developed for the determination of esomeprazole magnesium in commercial dosage forms. Method A is based on the reaction of esomeprazole magnesium with 5‐sulfosalicylic acid in methanol to form a yellow product, which absorbs maximally at 365 nm. Method B utilizes the reaction of esomeprazole magnesium with N‐bromosuccinimide in acetone‐chloroform medium to form α‐bromo derivative of the drug peaking at 380 nm. Under the optimized experimental conditions, Beer's law is obeyed in the concentration ranges of 2‐48 and 10‐100 μg mL?1 with molar absorptivity of 2.11 × 104 and 4.57 × 104L mol?1 cm?1 for methods A and B, respectively. The limits of detection for methods A and B are 0.35 and 0.46 μg mL?1, respectively. No interference was observed from excipients commonly present in tablet formulations. Methods A and B are successfully applied to the commercial tablets for the estimation of esomeprazole magnesium with good accuracy and precision. The results compare favorably with the reference spectrophotometric method indicating no significant difference between the methods compared.  相似文献   

3.
The objective of this work is to develop and validate spectrophotometric method for the determination of piroxicam in commercial dosage forms. The method is based on the chelation of the drug with Fe(III) to form pink coloured metal chelate at room temperature which absorbs maximally at 504 nm. Beer's law is obeyed over the concentration range of 8–160 μg mL?1 (A = 1.07 × 10?3 + 7.75 × 10?3 C). Under the optimized experimental conditions, proposed method is validated as per the International Conference on Harmonisation guidelines. The limits of detection and quantitation for the proposed method are 0.775 and 2.348 μg mL?1, respectively. The proposed method has been successfully applied to the determination of piroxicam in commercial dosage forms. The results are compared with the reference El‐Ries et al. spectrophotometric method.  相似文献   

4.
A validated, selective and sensitive spectrophotometric method has been developed for the determination of labetalol hydrochloride in commercial dosage forms. The method is based on the coupling reaction of positive diazonium ion of 4‐aminobenzenesulfonic acid with phenolate ion of labetalol to form a colored azo compound which absorbs maximally at 395 nm. Under the optimized experimental conditions, the color is stable up to 2 h and Beer's law is obeyed in the concentration range of 0.8–17.6 μg mL?1 with a linear regression equation of A = 4.84 × 10?4 + 7.864 × 10?2 C and coefficient of correlation, r = 0.9999. The molar absorptivity and Sandell's sensitivity are found to be 2.874 × 104 L mol?1 cm?1 and 0.013 μg cm?2 per 0.001‐absorbance unit, respectively. The limits of detection and quantitation of the proposed method are 0.08 and 0.23 μg mL?1, respectively. The intra‐day and inter‐day precision variation and accuracy of the proposed method is acceptable with low values of standard analytical error. The recovery results obtained by the proposed method in drug formulations are acceptable with mean percent recovery ± RSD of 99.97 ± 0.52 ‐ 100.03 ± 0.63%. The results of the proposed method compared with those of Bilal's spectrophotometric method indicated excellent agreement with acceptable true bias of all samples within ± 2.0%.  相似文献   

5.
《Analytical letters》2012,45(12):1999-2013
Abstract

A simple, rapid, selective, and sensitive method for the derivative spectrophotometric determination of Hg(II) and its simultaneous determination in the presence of Zn(II) using 2‐(5‐bromo‐2‐pyridylazo)‐5‐diethylaminophenol in the presence of cetylpyridinium chloride, a cationic surfactant, has been developed. The molar absorption coefficient and analytical sensitivity of the 1∶1 Hg(II) complex at 558 nm (λmax) are 5.78×104 L mol?1 cm?1 and 0.67 ng mL?1, respectively. The detection limit of Hg(II) is 1.40×10?2 ng mL?1, and Beer's law is valid in the concentration range 0.05–2.40 µg mL?1. Overlapping spectral profiles of Hg(II) and Zn(II) complexes in zero‐order mode interfere in their simultaneous determination. However, 0.10–2.00 µg mL?1 of Hg(II) and 0.065–0.650 µg mL?1 of Zn(II), when present together, can be simultaneously determined at zero cross point of the derivative spectrum, without any prior separation. The relative standard deviation for six replicate measurements of solutions containing 0.134 µg mL?1 of Hg(II) and 0.620 µg mL?1 of Zn(II) is 1.72 and 1.47%, respectively. The proposed method has successfully been evaluated for trace level simultaneous determination of Hg(II) and Zn(II) in environmental samples.  相似文献   

6.
A new reagent system has been reported for the extractive separation and simultaneous spectrophotometric de termination of vanadium (V). The method is based on the formation of a water in soluble blue‐violet V(V) complex with N‐hydroxy‐N‐m‐tolyl‐N′‐phenylbenzamidine (HTPBA), and neutral surfactant Triton X‐100 into chloroform over an acidity range of 1.0–10.0 M acetic acid. The complex shows a broad absorption maximum at 570 nm, when measured against a chloroform blank. The λmax (570 nm) of the complex and that of re agent (313 nm) are well separated, hence the excess of the reagent does not interfere in the spectrophotometric de termination of the metal. The molar absorptivity (?) of the complex is (4.74) × 103 1 mol?1 cm?1. The linearity of the calibration curve is followed between 0.5–12.0 μg mL?1 with slope, intercept and correlation coefficient of 9.16× 10?2, 4.5 × 10?3 and 0.999, respectively. The detection limit of the method is 45 μgl?1. The proposed re agent system provides significantly higher tolerance limit for iron (500 μg mL?1) and also various metalions commonly associated with vanadium did not interfere. The method was applied for the deter mi nation of vanadium content of three samples i.e. Spirogyra, Puccinia and Riccia.  相似文献   

7.
A selective and sensitive visible spectrophotometric method has been described for the quantitation of diltiazem hydrochloride in commercial dosage forms. The method is based on the reaction of the tertiary amino group of the drug with sodium hypochlorite to form the chloro drug derivative, followed by the destruction of the excess hypochlorite by sodium nitrite and the subsequent development of blue color takes place by the reaction of chloro derivative of drug with starch and potassium iodide in sodium bicarbonate medium. The maximum absorbance of the resulting blue solution is read at 540 nm. Under the optimized experimental conditions, Beer's law is obeyed in the concentration range of 2.5–25.0 μg mL?1 with a linear regression equation of A = 9.85 × 10?4 + 4.90 × 10?2 C and coefficient of correlation, r = 0.9999. The molar absorptivity is found to be 2.26 × 104L mol?1 cm?1. The limits of detection and quantitation of the proposed method are 0.12 and 0.37 μg mL?1, respectively. The proposed method has been successfully applied for the quantitation of diltiazem hydrochloride in commercial dosage forms. The results of the proposed method compared with those of Abdellatef's spectrophotometric method presented good mean recovery with acceptable true bias of all pharmaceutical samples within ± 2.0%.  相似文献   

8.
《Analytical letters》2012,45(5):973-983
Abstract

A rapid and sensitive flow‐injection chemiluminescence (FI‐CL) method, which is based on the CL intensity that generated from the redox reaction of Ce(IV)‐rhodamine B in H2SO4 medium, for the determination of acyclovir and gancyclovir is described. For acyclovir, the determination range is 3×10?8 g mL?1–7×10?5 g mL?1, with 1.56×10?8 g mL?1 as its determination limit. During 11 repeated measurements for 1×10?6 g mL?1 acyclovir, the relative standard deviation was 2.08%. For gancyclovir, the determination range was 5×10?8 g mL?1–7×10?5 g mL?1, with 2.35×10?8 g mL?1 as its determination limit. The relative standard deviation is 2.83% with 11 repeated measurements of 1×10?6 g mL?1 gancyclovir. This method can be successfully used to determine the content of acyclovir and gancyclovir in injections, acyclovir in eye drops, and, maybe, also for other ciclovirs.  相似文献   

9.
《Analytical letters》2012,45(11):2359-2372
Abstract

Ternary mixtures of nitrophenol isomers have been simultaneously determined in synthetic and real matrix by application of genetic algorithm and partial least squares model. All factors affecting the sensitivity were optimized and the linear dynamic range for determination of nitrophenol isomers found. The simultaneous determination of nitrophenol mixtures by using spectrophotometric methods is a difficult problem, due to spectral interferences. The partial least squares modeling was used for the multivariate calibration of the spectrophotometric data. A genetic algorithm is a suitable method for selecting wavelength for PLS calibration of mixtures with almost identical spectra without loss prediction capacity. The experimental calibration matrix was designed by measuring the absorbance over the range 300–520 nm for 21 samples of 1–20 µg mL?1, 1–20 µg mL?1, and 1–10 µg mL?1 of m‐nitrophenol, o‐nitrophenol, and p‐nitrophenol, respectively. The root mean square error of prediction for m‐nitrophenol, o‐nitrophenol, and p‐nitrophenol with genetic algorithms and without genetic algorithms were 0.3732, 0.5997, 0.3181 and 0.7309, 0.9961, 1.0055, respectively. The proposed method was successfully applied for the determination of m‐nitrophenol, o‐nitrophenol, and p‐nitrophenol in synthetic and water samples.  相似文献   

10.
《Analytical letters》2012,45(8):1413-1427
Abstract

A flow-injection configuration for the spectrophotometric determination of oxalate, citrate and tartrate is proposed. The procedure is based on the photochemical decomposition of the complexes formed between iron(III) and these anions. The iron(II) produced in the photochemical reactions was detected by measuring the absorbance after complexation with ferrozine (λmax=562 nm). Linear calibration graphs were obtained over the concentration ranges 5.0 × 10?6 - 1.0 × 10?4 M, 8 × 10?6 - 1.8 × 10?4 M and 1.0 × 10?6 - 2 × 10?5 M for oxalate, citrate and tartrate, respectively. The relative standard deviations at the 1x10?5 M concentration level were within the range 1.29 - 1.47 %. The sampling frequency was about 40 samples h?1. The usefulness of the method was tested in the determination of oxalate in urine and spinach, of citrate in pharmaceuticals and soft drinks and of tartrate in pharmaceuticals. For the determination of oxalate in urine samples a prior separation of the analyte by precipitation with calcium chloride is recommended.  相似文献   

11.
Three sensitive and accurate spectrophotometric procedures were developed for the analysis of cephapirine sodium in pure form and in its pharmaceutical formulation. Method A: A kinetic method based on the observation that in acidic medium cephapirine reduces sodium molybdate to molybdenum blue, the absorbance of which is proportional to the amount of antibiotic present at a fixed time of 40 minutes; the formed product was spectrophotometrically measured at 780 nm. The concentration of drug calculated using its calibration by fixed concentration and rate constant methods is feasible with the calibration equations obtained, but the fixed time method proved to be more applicable. Method B is based on chetale formation with palladium(II) chloride in buffered medium as the interaction between metal ions and ligand anions or moleules capable of the formation of complexes which results in the development of colors suitable for the characterization of quantitative determination of metal or ligand. Metals containing easily excited d or f electrons were suitable for the formation of colored complexes. Method C, is based on the formation of colored complex between palladium(II), eosin and cephapirine Na. Sodium lauryl sulphate is used as surfactant to increase the solubility and intensity of the formed complex. Under optimum conditions, the complexes showed maximum absorption at Δ370 and Δ550 for methods B and C, respectively. Apparent molar absorpitivities were 5.2 × 103, 5.5 × 103, 1.4 × 104; Sandell's sensitivities were 1.17 × 10?3, 1.24 × 10?3, 3.1 × 10?3, for methods A, B and C, respectively. The solution of the products obeyed Beer's Law in the concentration ranges 10–70, 20–70, 2–48, μg mL?1 for methods A, B, and C. The proposed methods were applied to the determination of the drug in pure or pharmaceutical preparations. The results obtained were compared statistically with those given by the official method.  相似文献   

12.
A new preconcentration method is presented for lead on TAN‐loaded polyurethane foam (PUF) and its measurement by differential pulse anodic stripping voltammetry (DPASV). The optimum sorption conditions of 1.29 × 10?5 M solution of Pb(II) ions on TAN‐loaded PUF were investigated. The maximum sorption was observed at pH 7 with 20 minutes equilibrated time on 7.25 mg mL?1 of TAN‐loaded foam. The kinetic study indicates that the overall sorption process was controlled by the intra‐particle diffusion process. The validity of Freundlich, Langmuir and Dubinin ‐ Radushkevich adsorption isotherms were tested. The Freundlich constants 1/n and KF are evaluated to be 0.45 ±0.04 and (1.03 +0.61) × 10?3 mol g?1, respectively. The monolayer sorption capacity and adsorption constant related to the Langmuir isotherm are (1.38 ± 0.08) × 10?5 mol g?1 and (1.46 ± 0.27) × 105 L mol?1, respectively. The mean free energy of Pb(II) ions sorption on‐TAN loaded PUF is 11.04 ± 0.28 kJ mol?1 indicating chemisorption phenomena. The effect of temperature on the sorption yields thermodynamics parameters of ΔH, ΔS and ΔG at 298 K that are 15.0 ± 1.4 kJ mol?1, 74 ±5 J mol?1 K?1 and ‐7.37 ± 0.28 kJ mol?1, respectively. The positive values of enthalpy (ΔH) and entropy (ΔS) indicate the endothermic sorption and stability of the sorbed complexes are entropy driven. However, the negative value of Gibb's free energy (ΔG) indicates the spontaneous nature of sorption. On the basis of these data, the sorption mechanism has been postulated. The effect of different foreign ions on the sorption and desorption studies were also carried out. The method was successfully applied for the determination of lead from different water samples at ng levels.  相似文献   

13.
Two simple and sensitive extractive spectrophotometric methods have been described for the analysis of clarithromycin in pure form and in pharmaceutical formulations. The methods involved formation of yellow colored chloroform extractable ion‐association complexes of clarithromycin with bromothymol blue (BTB) and cresol red (CR) in buffered aqueous solution at pH 4. The extracted complexes showed maximum absorbance at 410 and 415 nm for BTB and CR, respectively. Beer's law is obeyed in the concentration ranges 0.1–20 μg mL?1 and 2.0–20 μg mL?1 of clarithromycin with molar absorptivity of 2.01 × 104 and 4.378 × 103 for BTB and CR, respectively. The composition ratio of the ion‐association complex was clarithromycin: BTB and CR = 1:1 as established by Job's method. The methods have been applied to the determination of drug in commercial formulations. The results of analysis were validated statistically and through recovery studies.  相似文献   

14.
A simple, sensitive and accurate spectrophotometric method has been described for the determination of ampicillin(I), amoxicillin trihydrate(II) and cefazolin sodium(III). The procedure is based on the formation of Prussian Blue (PB) complex. The reaction between the acidic hydrolysis products of antibiotics (T = 60 °C) with mixture of Fe3+ and hexacyanoferrate(III) ions was evaluated for the spectrophotometric determination of the mentioned drugs. The maximum absorbance of the colored complex occurs at λ = 700 nm and the molar absorptivity is 3.0 × 104 1 mol?1cm?1. The effect of various parameters such as concentration of K3Fe(CN)6 and Fe3+, nature and amount of acids used, temperature and time of heating were investigated. Under optimum conditions the linear range of calibration graph was 2.0–12.0, 5.0–13.5 and 3.0–12.0 μg mL?1 for ampicillin, amoxicillin and cefazolin, respectively. The relative standard deviation for the determination of 10 μg mL?1 of antibiotics was about 0.5–1.5%. The proposed method was successfully applied to the determination of selected antibiotics from pharmaceutical preparations. The validity of the method was tested by the official methods and by the recovery studies of standard addition to pharmaceuticals.  相似文献   

15.
Simple, rapid and reliable method for the determination of albendazole (ABZ) was described. This includes the utility of some Π‐acceptors such as 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) and 3,6‐dichloro‐2,5‐dihy‐ droxy‐p‐benzoquinone (p‐CLA) for estimation of ABZ drug (act as donor). The experimental conditions were optimized and the system obeys Beer's law for 7.50–80 and 10.00–85.00 µg·mL?1 of ABZ using DDQ and p‐CLA, respectively. The molar absorptivity and Sandell sensitivity were calculated to be 1.83×103 and 1.12×103 L·mol?1·cm?1, and 2.60 and 3.40 ng·cm?2 using DDQ and p‐CLA, respectively. The limits of detection and quantification were calculated to be (7.42 and 6.73) and (9.94 and 4.13) µg·mL?1 using DDQ and p‐CLA, respectively. The proposed methods were successfully applied to the determination of ABZ in commercially available dosage forms. The reliability of the assays was established by parallel determination by the official method and recovery studies. The chemical structures of the solid charge‐transfer (CT) complexes formed via reaction between ABZ under study and Π‐acceptors, have been elucidated using elemental analyses (C, H and N), IR, 1H NMR and mass spectra.  相似文献   

16.
《Analytical letters》2012,45(4):763-775
Abstract

A simple and sensitive spectrophotometric method is described for determination of amoxicillin. The method is based on a nucleophilic substitution reaction to measure the pink compound produced by the reaction of amoxicillin with sodium 1,2‐naphthoquinone‐4‐sulfonate in pH 9.00 buffer solution. The stoichiometric ratio of the compound is 1:1, and its maximum absorption wavelength is at 468 nm, ε=3.91×103 L · mol?1 · cm?1. The Beer's law is obeyed in the range of 0.8–120 µg · mL?1 of amoxicillin. The linear regression equation is A=0.041239+0.22128 C, with 0.9994 of a linear regression correlation coefficient. The detection limit is 2.0 µg · mL?1, and average recovery is over 98.5%. This paper further optimizes the determination of amoxcillin compared to the previous methods, and the kinetic property and reaction mechanism are studied intensively. This proposed method has been successfully applied to the determination of amoxicillin in tablets and capsules. The results obtained by this method agreed well with those by the official method high pressure liquid chromatography (HPLC).  相似文献   

17.
The possibility of using Thio-Michler's Ketone (TMK), 4,4′-bis(dimethylamino) thiobenzophenone, for palladium(II) concentrated by micellar extraction at the cloud-point temperature, and later spectrophotometric determination, was investigated. Under the optimum conditions, preconcentration of 50?mL of water samples in the presence of 0.1% (w/v) octylphenoxy polyethoxy ethanol (Triton X-114), 2?×?10?6?mol?L?1?TMK and 1?×?10–3?mol?L?1 buffer solution (pH?=?3.0) gave the limit of detection of 0.47?ng?mL?1, and the calibration graph was linear in the range of 2–50?ng?mL–1. The recovery under optimum working conditions was higher than 97%. The proposed method has been applied to the spectrophotometric determination of palladium(II) in natural water samples after cloud-point extraction with satisfactory results.  相似文献   

18.
A simple, rapid, cost effective and extraction‐free spectrophotometric method has been developed for the determination of zolmitriptan in pharmaceutical raw and dosage forms. The method is based on the charge‐transfer reaction of zolmitriptan in acetonitrile medium with 0.2% 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone to form a colored product peaking at 555 nm. Beer's law is obeyed in the concentration range 10‐250 μg mL?1 with molar absorptivity of 1.7 × 103 L mole?1 cm?1. The effects of variables such as reagent concentration, time of reaction, color stability and interferences have been investigated to optimize the procedure. The results have been validated analytically and statistically. The proposed method has been successfully applied for the determination of zolmitriptan in pharmaceutical formulations. Results indicate that the method is accurate, precise and reproducible (relative standard deviation < 2%).  相似文献   

19.
A new spectrophotometric method was developed for the determination of aminomethylbenzoic acid (PAMBA) using 7,7,8,8‐tetracyanoquinodimethane (TCNQ). The method was based on the formation of charge transfer (CT) complex of this drug as n‐electron donor with the π‐acceptor TCNQ. TCNQ was found to react with PAMBA to produce a kind of yellow complex. The CT reaction proceeded quantitatively in pH 8.5 buffer solution. Different variables affecting the reaction were carefully studied and optimized. Under optimal reaction conditions, the stoichiometric ratio of the reaction, maximum absorption wavelength and the value of molar absorptivity were measured to be 1:1, 425 nm, and 1.9×104 L·mol?1·cm?1, respectively. Beer′s law was obeyed in the range of 1–9 µg·mL?1 of PAMBA. The data have been filled to a linear regression equation A=?0.2612+0.1123c (µg·mL?1), with a correlation coefficient of 0.9996. The detection limit was 0.4 µg·mL?1, R.S.D. was less than 1.9%, and average recovery was over 97.6%. The formation of the CT complex was also confirmed by both infrared and 1H NMR measurements. The thermodynamic property, kinetic property and reaction mechanism have also been discussed. The method developed was applied successfully to the determination of the subject drug in its pharmaceutical dosage forms with good precision and accuracy compared to official method revealed by t‐ and F‐tests.  相似文献   

20.
《Analytical letters》2012,45(5):947-956
Abstract

A new electrochemical substrate for horseradish peroxidase, methyl red, is reported. In this reaction system, horseradish peroxidase can catalyze the redox reaction of methyl red and H2O2. Methyl red exhibits a sensitive voltammetric peak at?0.51 V vs. Ag/AgCl reference electrode, the decrease of the peak current of methyl red is in proportion to the concentration of horseradish peroxidase (HRP). The linear range for determination of horseradish peroxidase is 5.0×10?8~5.0×10?7 g mL?1 and the detection limit is 1.8×10?8 g mL?1. The relative standard deviation is 3.3% when 2.0×10?7 g mL?1 HRP was sequentially determined 11 times. A voltammetric enzyme‐linked immunoassay method for the determination of estriol was developed, based on this electrochemical system. The linear range for determination of estriol is 1.0~1000.0 ng mL?1, and the detection limit is 0.33 ng mL?1. The relative standard deviation for 11 parallel determinations with 200 ng mL?1 estriol is 4.8%. Some pregnancy serum samples were analyzed with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号