首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If a graph G decomposes into edge‐disjoint 4‐cycles, then each vertex of G has even degree and 4 divides the number of edges in G. It is shown that these obvious necessary conditions are also sufficient when G is any simple graph having minimum degree at least , where n is the number of vertices in G. This improves the bound given by Gustavsson (PhD Thesis, University of Stockholm, 1991), who showed (as part of a more general result) sufficiency for simple graphs with minimum degree at least . On the other hand, it is known that for arbitrarily large values of n there exist simple graphs satisfying the obvious necessary conditions, having n vertices and minimum degree , but having no decomposition into edge‐disjoint 4‐cycles. We also show that if G is a bipartite simple graph with n vertices in each part, then the obvious necessary conditions for G to decompose into 4‐cycles are sufficient when G has minimum degree at least .  相似文献   

2.
Given a fixed multigraph H with V(H) = {h1,…, hm}, we say that a graph G is H‐linked if for every choice of m vertices v1, …, vm in G, there exists a subdivision of H in G such that for every i, vi is the branch vertex representing hi. This generalizes the notion of k‐linked graphs (as well as some other notions). For a family of graphs, a graph G is ‐linked if G is H‐linked for every . In this article, we estimate the minimum integer r = r(n, k, d) such that each n‐vertex graph with is ‐linked, where is the family of simple graphs with k edges and minimum degree at least . © 2008 Wiley Periodicals, Inc. J Graph Theory 58: 14–26, 2008  相似文献   

3.
The linear arboricity of a graph G is the minimum number of linear forests which partition the edges of G. Akiyama et al. conjectured that for any simple graph G. Wu wu proved the conjecture for a planar graph G of maximum degree . It is noted here that the conjecture is also true for . © 2008 Wiley Periodicals, Inc. J Graph Theory 58:210‐220, 2008  相似文献   

4.
A proper edge coloring of a graph G without isolated edges is neighbor‐distinguishing if any two adjacent vertices have distinct sets consisting of colors of their incident edges. The neighbor‐distinguishing index of G is the minimum number ndi(G) of colors in a neighbor‐distinguishing edge coloring of G. Zhang, Liu, and Wang in 2002 conjectured that if G is a connected graph of order at least 6. In this article, the conjecture is verified for planar graphs with maximum degree at least 12.  相似文献   

5.
《Journal of Graph Theory》2018,88(3):449-481
A 2‐matching of a graph G is a spanning subgraph with maximum degree two. The size of a 2‐matching U is the number of edges in U and this is at least where n is the number of vertices of G and κ denotes the number of components. In this article, we analyze the performance of a greedy algorithm 2greedy for finding a large 2‐matching on a random 3‐regular graph. We prove that with high probability, the algorithm outputs a 2‐matching U with .  相似文献   

6.
We consider finite, undirected, and simple graphs G of order n(G) and minimum degree δ(G). The connectivity κ(G) for a connected graph G is defined as the minimum cardinality over all vertex‐cuts. If κ(G) < δ(G), then Topp and Volkmann 7 showed in 1993 for p‐partite graphs G that As a simple consequence, Topp and Volkmann obtained for p‐partite graphs G the identity κ(G) = δ(G), if In this article, we will show that these results remain true for graphs G with ω(G) ≤ p, where ω(G) denotes the clique number of G. Since each p‐partite graph G satisfies ω(G) ≤ p, this generalizes the results of Topp and Volkmann. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 7–14, 2006  相似文献   

7.
《Journal of Graph Theory》2018,89(2):101-114
An edge in a k‐connected graph G is called k‐contractible if the graph obtained from G by contracting e is k‐connected. Generalizing earlier results on 3‐contractible edges in spanning trees of 3‐connected graphs, we prove that (except for the graphs if ) (a) every spanning tree of a k‐connected triangle free graph has two k‐contractible edges, (b) every spanning tree of a k‐connected graph of minimum degree at least has two k‐contractible edges, (c) for , every DFS tree of a k‐connected graph of minimum degree at least has two k‐contractible edges, (d) every spanning tree of a cubic 3‐connected graph nonisomorphic to K4 has at least many 3‐contractible edges, and (e) every DFS tree of a 3‐connected graph nonisomorphic to K4, the prism, or the prism plus a single edge has two 3‐contractible edges. We also discuss in which sense these theorems are best possible.  相似文献   

8.
Daniel Finkel   《Discrete Mathematics》2008,308(22):5265-5268
Hajnal and Corrádi proved that any simple graph on at least 3k vertices with minimal degree at least 2k contains k independent cycles. We prove the analogous result for chorded cycles. Let G be a simple graph with |V(G)|4k and minimal degree δ(G)3k. Then G contains k independent chorded cycles. This result is sharp.  相似文献   

9.
The linear arboricity la(G) of a graph G is the minimum number of linear forests that partition the edges of G. Akiyama, Exoo, and Harary conjectured that for any simple graph G with maximum degree Δ. The conjecture has been proved to be true for graphs having Δ = 1, 2, 3, 4, 5, 6, 8, 10. Combining these results, we prove in the article that the conjecture is true for planar graphs having Δ(G) ≠ 7. Several related results assuming some conditions on the girth are obtained as well. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 129–134, 1999  相似文献   

10.
A clique covering of a simple graph G is a collection of cliques of G covering all the edges of G such that each vertex is contained in at most k cliques. The smallest k for which G admits a clique covering is called the local clique cover number of G and is denoted by lcc(G). Local clique cover number can be viewed as the local counterpart of the clique cover number that is equal to the minimum total number of cliques covering all edges. In this article, several aspects of the local clique covering problem are studied and its relationships to other well‐known problems are discussed. In particular, it is proved that the local clique cover number of every claw‐free graph is at most , where Δ is the maximum degree of the graph and c is a constant. It is also shown that the bound is tight, up to a constant factor. Moreover, regarding a conjecture by Chen et al. (Clique covering the edges of a locally cobipartite graph, Discrete Math 219(1–3)(2000), 17–26), we prove that the clique cover number of every connected claw‐free graph on n vertices with the minimum degree δ, is at most , where c is a constant.  相似文献   

11.
《Journal of Graph Theory》2018,88(1):211-221
An immersion of a graph H in another graph G is a one‐to‐one mapping and a collection of edge‐disjoint paths in G, one for each edge of H, such that the path corresponding to the edge has endpoints and . The immersion is strong if the paths are internally disjoint from . We prove that every simple graph of minimum degree at least contains a strong immersion of the complete graph . This improves on previously known bound of minimum degree at least 200t obtained by DeVos et al. Our result supports a conjecture of Lescure and Meyniel (also independently proposed by Abu‐Khzam and Langston), which is the analogue of famous Hadwiger’s conjecture for immersions and says that every graph without a ‐immersion is ‐colorable.  相似文献   

12.
If k is a prime power, and G is a graph with n vertices, then a k‐coloring of G may be considered as a vector in $\mathbb{GF}$(k)n. We prove that the subspace of $\mathbb{GF}$(3)n spanned by all 3‐colorings of a planar triangle‐free graph with n vertices has dimension n. In particular, any such graph has at least n − 1 nonequivalent 3‐colorings, and the addition of any edge or any vertex of degree 3 results in a 3‐colorable graph. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 234–245, 2000  相似文献   

13.
We obtain a sharp minimum degree condition δ (G) ≥ of a graph G of order n ≥ 3k guaranteeing that, for any k distinct vertices, G contains k vertex‐disjoint cycles of length at most four each of which contains one of the k prescribed vertices. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 37–47, 2001  相似文献   

14.
A graph is 1‐planar if it can be drawn on the plane so that each edge is crossed by no more than one other edge (and any pair of crossing edges cross only once). A non‐1‐planar graph G is minimal if the graph is 1‐planar for every edge e of G. We construct two infinite families of minimal non‐1‐planar graphs and show that for every integer , there are at least nonisomorphic minimal non‐1‐planar graphs of order n. It is also proved that testing 1‐planarity is NP‐complete.  相似文献   

15.
《Journal of Graph Theory》2018,89(2):194-213
We first prove that for every vertex x of a 4‐connected graph G, there exists a subgraph H in G isomorphic to a subdivision of the complete graph K4 on four vertices such that is connected and contains x. This implies an affirmative answer to a question of Kühnel whether every 4‐connected graph G contains a subdivision H of K4 as a subgraph such that is connected. The motor for our induction is a result of Fontet and Martinov stating that every 4‐connected graph can be reduced to a smaller one by contracting a single edge, unless the graph is the square of a cycle or the line graph of a cubic graph. It turns out that this is the only ingredient of the proof where 4‐connectedness is used. We then generalize our result to connected graphs of minimum degree at least 4 by developing the respective motor, a structure theorem for the class of simple connected graphs of minimum degree at least 4. A simple connected graph G of minimum degree 4 cannot be reduced to a smaller such graph by deleting a single edge or contracting a single edge and simplifying if and only if it is the square of a cycle or the edge disjoint union of copies of certain bricks as follows: Each brick is isomorphic to K3, K5, K2, 2, 2, , , or one the four graphs , , , obtained from K5 and K2, 2, 2 by deleting the edges of a triangle, or replacing a vertex x by two new vertices and adding four edges to the endpoints of two disjoint edges of its former neighborhood, respectively. Bricks isomorphic to K5 or K2, 2, 2 share exactly one vertex with the other bricks of the decomposition, vertices of degree 4 in any other brick are not contained in any further brick of the decomposition, and the vertices of a brick isomorphic to K3 must have degree 4 in G and have pairwise no common neighbors outside that brick.  相似文献   

16.
In this article, we consider Vizing's 2‐Factor Conjecture which claims that any Δ‐critical graph has a 2‐factor, and show that if G is a Δ‐critical graph with n vertices satisfying , then G is Hamiltonian and thus G has a 2‐factor. Meanwhile in this article, we also consider long cycles of overfull critical graphs and obtain that if G is an overfull Δ‐critical graph with n vertices, then the circumference of G is at least min.© 2012 Wiley Periodicals, Inc. J. Graph Theory 00: 1‐14, 2012  相似文献   

17.
In this paper, we show that if G is a 3‐edge‐connected graph with and , then either G has an Eulerian subgraph H such that , or G can be contracted to the Petersen graph in such a way that the preimage of each vertex of the Petersen graph contains at least one vertex in S. If G is a 3‐edge‐connected planar graph, then for any , G has an Eulerian subgraph H such that . As an application, we obtain a new result on Hamiltonian line graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 308–319, 2003  相似文献   

18.
Given , a kproper partition of a graph G is a partition of such that each part P of induces a k‐connected subgraph of G. We prove that if G is a graph of order n such that , then G has a 2‐proper partition with at most parts. The bounds on the number of parts and the minimum degree are both best possible. We then prove that if G is a graph of order n with minimum degree where , then G has a k‐proper partition into at most parts. This improves a result of Ferrara et al. ( Discrete Math 313 (2013), 760–764), and both the degree condition and the number of parts is best possible up to the constant c.  相似文献   

19.
Chetwynd and Hilton showed that any regular graph G of even order n which has relatively high degree has a 1‐factorization. This is equivalent to saying that under these conditions G has chromatic index equal to its maximum degree . Using this result, we show that any (not necessarily regular) graph G of even order n that has sufficiently high minimum degree has chromatic index equal to its maximum degree providing that G does not contain an “overfull” subgraph, that is, a subgraph which trivially forces the chromatic index to be more than the maximum degree. This result thus verifies the Overfull Conjecture for graphs of even order and sufficiently high minimum degree. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 73–80, 2004  相似文献   

20.
《Journal of Graph Theory》2018,87(2):188-207
We describe an algorithm for generating all k‐critical ‐free graphs, based on a method of Hoàng et al. (A graph G is k‐critical H‐free if G is H‐free, k‐chromatic, and every H‐free proper subgraph of G is ‐colorable). Using this algorithm, we prove that there are only finitely many 4‐critical ‐free graphs, for both and . We also show that there are only finitely many 4‐critical ‐free graphs. For each of these cases we also give the complete lists of critical graphs and vertex‐critical graphs. These results generalize previous work by Hell and Huang, and yield certifying algorithms for the 3‐colorability problem in the respective classes. In addition, we prove a number of characterizations for 4‐critical H‐free graphs when H is disconnected. Moreover, we prove that for every t, the class of 4‐critical planar ‐free graphs is finite. We also determine all 52 4‐critical planar P7‐free graphs. We also prove that every P11‐free graph of girth at least five is 3‐colorable, and show that this is best possible by determining the smallest 4‐chromatic P12‐free graph of girth at least five. Moreover, we show that every P14‐free graph of girth at least six and every P17‐free graph of girth at least seven is 3‐colorable. This strengthens results of Golovach et al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号