首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, we consider the circular chromatic number χc(G) of series‐parallel graphs G. It is well known that series‐parallel graphs have chromatic number at most 3. Hence, their circular chromatic numbers are at most 3. If a series‐parallel graph G contains a triangle, then both the chromatic number and the circular chromatic number of G are indeed equal to 3. We shall show that if a series‐parallel graph G has girth at least 2 ⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). The special case k = 2 of this result implies that a triangle free series‐parallel graph G has circular chromatic number at most 8/3. Therefore, the circular chromatic number of a series‐parallel graph (and of a K4‐minor free graph) is either 3 or at most 8/3. This is in sharp contrast to recent results of Moser [5] and Zhu [14], which imply that the circular chromatic number of K5‐minor free graphs are precisely all rational numbers in the interval [2, 4]. We shall also construct examples to demonstrate the sharpness of the bound given in this article. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 14–24, 2000  相似文献   

2.
It was proved by Hell and Zhu that, if G is a series‐parallel graph of girth at least 2⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). In this article, we prove that the girth requirement is sharp, i.e., for any k ≥ 2, there is a series‐parallel graph G of girth 2⌊(3k − 1)/2⌋ − 1 such that χc(G) > 4k/(2k − 1). © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 185–198, 2000  相似文献   

3.
We show a connection between two concepts that have hitherto been investigated separately, namely convex‐round graphs and circular cliques. The connections are twofold. We prove that the circular cliques are precisely the cores of convex‐round graphs; this implies that convex‐round graphs are circular‐perfect, a concept introduced recently by Zhu [10]. Secondly, we characterize maximal Kr‐free convex‐round graphs and show that they can be obtained from certain circular cliques in a simple fashion. Our proofs rely on several structural properties of convex‐round graphs. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 182–194, 2002  相似文献   

4.
We show that the numbers of vertices of a given degree k ≥ 1 in several kinds of series‐parallel labeled graphs of size n satisfy a central limit theorem with mean and variance proportional to n, and quadratic exponential tail estimates. We further prove a corresponding theorem for the number of nodes of degree two in labeled planar graphs. The proof method is based on generating functions and singularity analysis. In particular, we need systems of equations for multivariate generating functions and transfer results for singular representations of analytic functions. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

5.
In this paper we show that every simple cubic graph on n vertices has a set of at least ? n/4 ? disjoint 2‐edge paths and that this bound is sharp. Our proof provides a polynomial time algorithm for finding such a set in a simple cubic graph. © 2003 Wiley Periodicals, Inc. J Graph Theory 45: 57–79, 2003  相似文献   

6.
The notion of (circular) colorings of edge‐weighted graphs is introduced. This notion generalizes the notion of (circular) colorings of graphs, the channel assignment problem, and several other optimization problems. For instance, its restriction to colorings of weighted complete graphs corresponds to the traveling salesman problem (metric case). It also gives rise to a new definition of the chromatic number of directed graphs. Several basic results about the circular chromatic number of edge‐weighted graphs are derived. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 107–116, 2003  相似文献   

7.
Map the vertices of a graph to (not necessarily distinct) points of the plane so that two adjacent vertices are mapped at least unit distance apart. The plane‐width of a graph is the minimum diameter of the image of its vertex set over all such mappings. We establish a relation between the plane‐width of a graph and its chromatic number. We also connect it to other well‐known areas, including the circular chromatic number and the problem of packing unit discs in the plane. © 2011 Wiley Periodicals, Inc. J Graph Theory 68: 229‐245, 2011  相似文献   

8.
We introduce a construction called the fractional multiple of a graph. This construction is used to settle a question raised by E. Welzl: We show that if G and H are vertex-transitive graphs such that there exists a homomorphism from G to H but no homomorphism from H to G, then there exists a vertex-transitive graph that is homomorphically in between G and H.  相似文献   

9.
For 1 ≤ dk, let Kk/d be the graph with vertices 0, 1, …, k ? 1, in which ij if d ≤ |i ? j| ≤ k ? d. The circular chromatic number χc(G) of a graph G is the minimum of those k/d for which G admits a homomorphism to Kk/d. The circular clique number ωc(G) of G is the maximum of those k/d for which Kk/d admits a homomorphism to G. A graph G is circular perfect if for every induced subgraph H of G, we have χc(H) = ωc(H). In this paper, we prove that if G is circular perfect then for every vertex x of G, NG[x] is a perfect graph. Conversely, we prove that if for every vertex x of G, NG[x] is a perfect graph and G ? N[x] is a bipartite graph with no induced P5 (the path with five vertices), then G is a circular perfect graph. In a companion paper, we apply the main result of this paper to prove an analog of Haj?os theorem for circular chromatic number for k/d ≥ 3. Namely, we shall design a few graph operations and prove that for any k/d ≥ 3, starting from the graph Kk/d, one can construct all graphs of circular chromatic number at least k/d by repeatedly applying these graph operations. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 186–209, 2005  相似文献   

10.
In (J Graph Theory 33 (2000), 14–24), Hell and Zhu proved that if a series–parallel graph G has girth at least 2?(3k?1)/2?, then χc(G)≤4k/(2k?1). In (J Graph Theory 33 (2000), 185–198), Chien and Zhu proved that the girth condition given in (J Graph Theory 33 (2000), 14–24) is sharp. Short proofs of both results are given in this note. © 2010 Wiley Periodicals, Inc. J Graph 66: 83‐88, 2010 Theory  相似文献   

11.
This article studies the circular chromatic number of a class of circular partitionable graphs. We prove that an infinite family of circular partitionable graphs G has . A consequence of this result is that we obtain an infinite family of graphs G with the rare property that the deletion of each vertex decreases its circular chromatic number by exactly 1. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

12.
The circular chromatic index of a graph G, written , is the minimum r permitting a function such that whenever e and are incident. Let □ , where □ denotes Cartesian product and H is an ‐regular graph of odd order, with (thus, G is s‐regular). We prove that , where is the minimum, over all bases of the cycle space of H, of the maximum length of a cycle in the basis. When and m is large, the lower bound is sharp. In particular, if , then □ , independent of m. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 7–18, 2008  相似文献   

13.
We consider the following edge coloring game on a graph G. Given t distinct colors, two players Alice and Bob, with Alice moving first, alternately select an uncolored edge e of G and assign it a color different from the colors of edges adjacent to e. Bob wins if, at any stage of the game, there is an uncolored edge adjacent to colored edges in all t colors; otherwise Alice wins. Note that when Alice wins, all edges of G are properly colored. The game chromatic index of a graph G is the minimum number of colors for which Alice has a winning strategy. In this paper, we study the edge coloring game on k‐degenerate graphs. We prove that the game chromatic index of a k‐degenerate graph is at most Δ + 3k − 1, where Δ is the maximum vertex degree of the graph. We also show that the game chromatic index of a forest of maximum degree 3 is at most 4 when the forest contains an odd number of edges. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 144–155, 2001  相似文献   

14.
In 1960, Dirac posed the conjecture that r‐connected 4‐critical graphs exist for every r ≥ 3. In 1989, Erd?s conjectured that for every r ≥ 3 there exist r‐regular 4‐critical graphs. In this paper, a technique of constructing r‐regular r‐connected vertex‐transitive 4‐critical graphs for even r ≥ 4 is presented. Such graphs are found for r = 6, 8, 10. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 103–130, 2004  相似文献   

15.
We investigate the local chromatic number of shift graphs and prove that it is close to their chromatic number. This implies that the gap between the directed local chromatic number of an oriented graph and the local chromatic number of the underlying undirected graph can be arbitrarily large. We also investigate the minimum possible directed local chromatic number of oriented versions of “topologically t‐chromatic” graphs. We show that this minimum for large enough t‐chromatic Schrijver graphs and t‐chromatic generalized Mycielski graphs of appropriate parameters is ?t/4?+1. © 2010 Wiley Periodicals, Inc. J Graph Theory 66: 65‐82, 2010  相似文献   

16.
17.
18.
A graph is chromatic‐choosable if its choice number coincides with its chromatic number. It is shown in this article that, for any graph G, if we join a sufficiently large complete graph to G, then we obtain a chromatic‐choosable graph. As a consequence, if the chromatic number of a graph G is close enough to the number of vertices in G, then G is chromatic‐choosable. We also propose a conjecture related to this fact. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 130–135, 2002  相似文献   

19.
A geometric graph is a simple graph drawn on points in the plane, in general position, with straightline edges. A geometric homomorphism from to is a vertex map that preserves adjacencies and crossings. This work proves some basic properties of geometric homomorphisms and defines the geochromatic number as the minimum n so that there is a geometric homomorphism from to a geometric n‐clique. The geochromatic number is related to both the chromatic number and to the minimum number of plane layers of . By providing an infinite family of bipartite geometric graphs, each of which is constructed of two plane layers, which take on all possible values of geochromatic number, we show that these relationships do not determine the geochromatic number. This article also gives necessary (but not sufficient) and sufficient (but not necessary) conditions for a geometric graph to have geochromatic number at most four. As a corollary, we get precise criteria for a bipartite geometric graph to have geochromatic number at most four. This article also gives criteria for a geometric graph to be homomorphic to certain geometric realizations of K2, 2 and K3, 3. © 2011 Wiley Periodicals, Inc. J Graph Theory 69:97‐113, 2012  相似文献   

20.
《Journal of Graph Theory》2018,87(2):135-148
Let ( be two positive integers. We generalize the well‐studied notions of ‐colorings and of the circular chromatic number to signed graphs. This implies a new notion of colorings of signed graphs, and the corresponding chromatic number χ. Some basic facts on circular colorings of signed graphs and on the circular chromatic number are proved, and differences to the results on unsigned graphs are analyzed. In particular, we show that the difference between the circular chromatic number and the chromatic number of a signed graph is at most 1. Indeed, there are signed graphs where the difference is 1. On the other hand, for a signed graph on n vertices, if the difference is smaller than 1, then there exists , such that the difference is at most . We also show that the notion of ‐colorings is equivalent to r‐colorings (see [12] (X. Zhu, Recent developments in circular coloring of graphs, in Topics in Discrete Mathematics Algorithms and Combinatorics Volume 26 , Springer Berlin Heidelberg, 2006, pp. 497–550)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号