首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physical and thermodynamic properties have been calculated and analyzed for the best and optimized geometries of the 3‐D clusters with N = 3 to N = 10 atoms and unit cells of three types of crystalline systems using ab initio RHF/6–31G** method. Dependence of the lattice binding energy on the cluster parameter, R, has been studied. Similar behavior observed for the binding energies for all clusters shows that probabilities of their existence in the condensed phase are more or less the same. In the next step, thermodynamic properties have been calculated and analyzed for He27 3‐D helium clusters with simple cubic, body centered cubic (bcc), trigonal and hexagonal (hcp) configurations. The results show that the hexagonal cluster is more favored over other clusters. It is found that these clusters are electronically stable over a limited range of the values for the lattice parameter. ΔfH is constant in this stability region and thus the ΔfG exactly follows the variations of TΔfS. Surface effects have been investigated by comparing the square and hexagonal He9 2‐D lattices with the cubic and hexagonal He27 3‐D lattices, respectively. The lattice parameters, densities and molar volumes calculated for the clusters with hcp and bcc configurations have satisfactory agreement with the available experimental values. Properties of the He13, He34 and He104 hcp clusters have also been calculated and analyzed.  相似文献   

2.
Dissolution of some industrially relevant atomic and diatomic species (Ar, Ne, H, O, H2, N2 and O2) in the 5 × 5 2‐D hexagonal and square helium lattices, as the model of the liquid helium cryogen, has been studied using ab initio MP2/6‐31++G computations. Structural, electronic and thermochemical properties have been calculated and analyzed for these solution lattices. Results of these calculations show that dissolution of Ar, Ne, H and H2 species is more favored at higher temperatures. A reverse trend is observed for the dissolution of O, N2 and O2 species. A staggered orientation is preferred by all diatomic species in both lattices. Results of this study also show that breakage of the O2 molecule becomes slightly easier in the 2‐D helium lattices as compared with that of the H2 molecule. Effect of the cavity geometry and size, and position of the solute in the lattice have also been studied. Analysis of the results shows that the range of the interaction between the solute and solvent atoms is only one helium layer.  相似文献   

3.
π‐Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4′‐Phenyl‐2,2′:6′,2′′‐terpyridine (PTP) is an important N‐heterocyclic ligand involving π‐conjugated systems, however, studies concerning the third‐order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine CoII complex, bis(μ‐4,4′‐oxydibenzoato)‐κ3O,O′:O′′;κ3O′′:O,O′‐bis[(4′‐phenyl‐2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each CoII cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry‐related monodentate 4,4′‐oxydibenzoate (ODA2−) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)]2+ units are bridged by ODA2− ligands to form a ring‐like structure. The third‐order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z‐scan technique. The title compound shows a strong third‐order NLO saturable absorption (SA), while PTP exhibits a third‐order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is −37.3 × 10−7 m W−1, which is larger than that (8.96 × 10−7 m W−1) of PTP. The third‐order NLO susceptibility χ(3) values are calculated as 6.01 × 10−8 e.s.u. for (1) and 1.44 × 10−8 e.s.u. for PTP.  相似文献   

4.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

5.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

6.
In recent years, coordination polymers constructed from multidentate carboxylate ligands and N‐containing ligands have attracted much attention since these ligands can adopt a rich variety of coordination modes which can lead to crystalline products with intriguing structures and interesting properties. A new coordination polymer, namely poly[[diaqua[μ‐2,7‐bis(1H‐imidazol‐1‐yl)fluorene‐κ2N3:N3′][μ‐5,5′‐methylenebis(3‐carboxy‐2,4,6‐trimethylbenzoato)‐κ2O1:O1′]zinc(II)] hemihydrate], {[Zn(C23H22O8)(C19H14N4)(H2O)2]·0.5H2O}n, 1 , was prepared by the self‐assembly of Zn(NO3)2·6H2O with 5,5′‐methylenebis(2,4,6‐trimethylisophthalic acid) (H4BTMIPA) and 2,7‐bis(1H‐imidazol‐1‐yl)fluorene (BIF) under solvothermal conditions. The structure of 1 was determined by elemental analysis, single‐crystal X‐ray crystallography, powder X‐ray diffraction, IR spectroscopy and thermogravimetric analysis. Each ZnII ion is six‐coordinated by two O atoms from two H2BTMIPA2? ligands, by two N atoms from two BIF ligands and by two water molecules, forming a distorted octahedral ZnN2O4 coordination geometry. Adjacent ZnII ions are linked by H2BTMIPA2? ligands and BIF ligands, leading to the formation of a two‐dimensional (2D) (4,4)‐ sql network, and intermolecular hydrogen‐bonding interactions connect the 2D layer structure into the three‐dimensional (3D) supramolecular structure. Each 2D layer contains two kinds of helices with the same direction, which are opposite in adjacent layers. The luminescence properties of complex 1 in the solid state have also been investigated.  相似文献   

7.
Polyol Metal Complexes.471) Crystalline D ‐Mannose‐Copper Complexes from Fehling Solutions Blue, unstable crystals of K3[Cu5(β‐D ‐Manp)4H—13] · α‐D ‐Manp · 16.5 H2O ( 1 ), which contain a pentanuclear cupric complex of the reducing sugar D ‐mannose in its β‐pyranose form (β‐D ‐Manp), have been obtained from ice‐cold aqueous alkaline solutions. The homoleptic pentacuprate contains bridging mannopyranose ligands, which are charged 4— and 2.5—. Addition of ethylenediamine (en) to such Fehling solutions yields N, N′‐Bis(β‐D ‐mannopyranosyl)‐ethylenediamine (L) as a condensation product of the diamine and mannopyranose. Crystals of [(en)2Cu7(β‐D ‐Manp1, 2, 3, 4H—4)2(L2, 3, 4H—3)2] · 26.6 H2O ( 2 ) could be isolated. The heptanuclear cupric complex is a structural derivative of the homoleptic mannose complex.  相似文献   

8.
Abstract. Two bis‐triazole‐bis‐amide‐based copper(II) pyridine‐2,3‐dicarboxylate coordination polymers (CPs), [Cu(2,3‐pydc)(dtb)0.5(DMF)] · 2H2O ( 1 ) and [Cu(2,3‐pydc)(dth)0.5(DMF)] · 2H2O ( 2 ) (2,3‐H2pydc = pyridine‐2,3‐dicarboxylic acid, dtb = N,N′‐bis(4H‐1,2,4‐triazole)butanamide, and dth = N,N′‐bis(4H‐1,2,4‐triazole)hexanamide), were synthesized under solvothermal conditions. CPs 1 and 2 show similar two‐dimensional (2D) structures. In 1 , the 2,3‐pydc anions bridge the CuII ions into a one‐dimensional (1D) chain. Such 1D chains are linked by the dtb ligands to form a 2D layer. The adjacent 2D layers are extended into a three‐dimensional (3D) supramolecular architecture by hydrogen‐bonding interactions. The electrochemical properties of 1 and 2 were investigated.  相似文献   

9.
Twenty nine novel N‐4‐methyl‐1,2,3‐thiadiazole‐5‐carbonyl‐N′‐phenyl ureas were designed and synthesized, and their structures were confirmed by proton nuclear magnetic resonance (1H NMR), infra red spectroscopy (IR) and high‐resolution mass spectroscopy (HRMS). Compounds V‐9 , V‐11 , V‐12 , V‐15 , V‐19 , V‐21 , V‐22 and V‐24 exhibit excellent activity against Culex pipiens pallens. Compounds V‐12 and V‐22 present good insecticidal activity against Plutella xylostella L. Their median lethal concentrations (LC50) are 164.15 and 89.69 mg·L?1, respectively. Compound V‐11 also has potential wide spectrum of fungicide activity. Its median effective concentrations (EC50) detected from 3.82 µg·mL?1 against Physalospora piricola to 31.60 µg·mL?1 against Cercospora arachidicola. Compounds V‐15 and V‐24 show outstanding induction activities as same as positive controls TDL and ningnanmycin, furthermore V‐24 has the highest induction activity of 41.85%±4.43%. To elucidate the structure activity relationship in these compounds, a 3D‐QSAR model has been built. The established model showed a reliable predicting ability with q2 values of 0.643 and r2 values of 0.982.  相似文献   

10.
A stereoregular 2‐amino‐glycan composed of a mannosamine residue was prepared by ring‐opening polymerization of anhydro sugars. Two different monomers, 1,6‐anhydro‐2‐azido‐mannose derivative ( 3 ) and 1,6‐anhydro‐2‐(N, N‐dibenzylamino)‐mannose derivative ( 6 ), were synthesized and polymerized. Although 3 gave merely oligomers, 6 was promptly polymerized into high polymers of the number‐average molecular weight (Mn) of 2.3 × 104 to 2.9 × 104 with 1,6‐α stereoregularity. The differences of polymerizability of 3 and 6 from those of the corresponding glucose homologs were discussed. It was found that an N‐benzyl group is exceedingly suitable for protecting an amino group in the polymerization of anhydro sugars of a mannosamine type. The simultaneous removal of O‐ and N‐benzyl groups of the resulting polymers was achieved by using sodium in liquid ammonia to produce the first 2‐amino‐glycan, poly‐(1→6)‐α‐D ‐mannosamine, having high molecular weight through ring‐opening polymerization of anhydro sugars.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Much attention has been paid by chemists to the construction of supramolecular coordination compounds based on the multifunctional ligand 5‐sulfosalicylic acid (H3SSA) due to the structural and biological interest of these compounds. However, no coordination compounds have been reported for the multifunctional amino‐substituted sulfobenzoate ligand 2‐amino‐5‐sulfobenzoic acid (H2asba). We expected that H2asba could be a suitable building block for the assembly of supramolecular networks due to its interesting structural characteristics. The reaction of cadmium(II) nitrate with H2asba in the presence of the auxiliary flexible dipyridylamide ligand N,N′‐bis[(pyridin‐4‐yl)methyl]oxamide (4bpme) under ambient conditions formed a new mixed‐ligand coordination compound, namely bis(3‐amino‐4‐carboxybenzenesulfonato‐κO1)diaquabis{N,N′‐bis[(pyridin‐4‐yl)methyl]oxamide‐κN}cadmium(II)–N,N′‐bis[(pyridin‐4‐yl)methyl]oxamide–water (1/1/4), [Cd(C7H6NO5S)2(C14H14N4O2)2(H2O)2]·C14H14N4O2·4H2O, (1), which was characterized by single‐crystal and powder X‐ray diffraction analysis (PXRD), FT–IR spectroscopy, thermogravimetric analysis (TG), and UV–Vis and photoluminescence spectroscopic analyses in the solid state. The central CdII atom in (1) occupies a special position on a centre of inversion and exhibits a slightly distorted octahedral geometry, being coordinated by two N atoms from two monodentate 4bpme ligands, four O atoms from two monodentate 4‐amino‐3‐carboxybenzenesulfonate (Hasba) ligands and two coordinated water molecules. Interestingly, complex (1) further extends into a threefold polycatenated 0D→2D (0D is zero‐dimensional and 2D is two‐dimensional) interpenetrated supramolecular two‐dimensional (4,4) layer through intermolecular hydrogen bonding. The interlayer hydrogen bonding further links adjacent threefold polycatenated two‐dimensional layers into a three‐dimensional network. The optical properties of complex (1) indicate that it may be used as a potential indirect band gap semiconductor material. Complex (1) exhibits an irreversible dehydration–rehydration behaviour. The fluorescence properties have also been investigated in the solid state at room temperature.  相似文献   

12.
In this work a 1,2,4‐triazole derivative 1‐(4‐aminobenzyl)‐1,2,4‐triazole (abtz) was utilized, one new cadmium(II) coordination polymer, namely [Cd(abtz)I2]n ( 1 ) was prepared through the powerful solvo‐thermal synthetic strategy. In compound 1 , the abtz building blocks are interlinked through the central CdII ions forming the two‐dimensional (2D) layer coordination framework. Powder X‐ray diffraction (PXRD) characterization also reveals that we have prepared the pure phases of coordination polymer 1 . Optical properties have been determined, which can behave the excellent photo‐luminescent emission of coordination polymer 1 . Photo‐luminescent experiment also reveals that coordination polymer 1 can behave the highly sensitive detection for acetone molecules with high Ksv value (Ksv = 4.12 ×104 L · mol–1) in the recyclable detection fashion. Additionally, coordination polymer 1 also can behave the highly sensitive detection for pollutant dichromate with excellent quenching efficiency Ksv (Ksv = 2.12 × 104 L · mol–1) and low detection limit [38 × 10–3 mM (S/N = 3)]. UV/Vis, photo‐luminescent lifetime, and PXRD patterns also have been determined to analyze the detection mechanism.  相似文献   

13.
A novel chromogenic method to measure the peroxidase activity using para‐phenylenediamine dihydrochloride (=benzene‐1,4‐diamine hydrochloride; PPDD) and N‐(1‐naphthyl)ethylenediamine dihydrochloride (=N‐(2‐aminoethyl)naphthalen‐1‐amine; NEDA) is presented. The PPDD entraps the free radical and gets oxidized to electrophilic diimine, which couples with NEDA to give an intense red‐colored chromogenic species with maximum absorbance at 490 nm. This assay was adopted for the quantification of H2O2 between 20 and 160 μM . Catalytic efficiency and catalytic power of the commercial peroxidase were found to be 4.47×104 M ?1 min?1 and 3.38×10?4 min?1, respectively. The catalytic constant (kcat) and specificity constant (kcat/Km) at saturated concentration of the co‐substrates were 0.0245×103 min?1 and 0.0445 μM ?1 min?1, respectively. The chromogenic coupling reaction has a minimum interference from the reducing substances such as ascorbic acid, L ‐cystein, citric acid, and oxalic acid. The method being simple, rapid, precise, and sensitive, its applicability has been tested in the crude vegetable extracts that showed peroxidase activity.  相似文献   

14.
Four crystal structures of 3‐cyano‐6‐hydroxy‐4‐methyl‐2‐pyridone (CMP), viz. the dimethyl sulfoxide monosolvate, C7H6N2O2·C2H6OS, (1), the N,N‐dimethylacetamide monosolvate, C7H6N2O2·C4H9NO, (2), a cocrystal with 2‐amino‐4‐dimethylamino‐6‐methylpyrimidine (as the salt 2‐amino‐4‐dimethylamino‐6‐methylpyrimidin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate), C7H13N4+·C7H5N2O2, (3), and a cocrystal with N,N‐dimethylacetamide and 4,6‐diamino‐2‐dimethylamino‐1,3,5‐triazine [as the solvated salt 2,6‐diamino‐4‐dimethylamino‐1,3,5‐triazin‐1‐ium 5‐cyano‐4‐methyl‐6‐oxo‐1,6‐dihydropyridin‐2‐olate–N,N‐dimethylacetamide (1/1)], C5H11N6+·C7H5N2O2·C4H9NO, (4), are reported. Solvates (1) and (2) both contain the hydroxy group in a para position with respect to the cyano group of CMP, acting as a hydrogen‐bond donor and leading to rather similar packing motifs. In cocrystals (3) and (4), hydrolysis of the solvent molecules occurs and an in situ nucleophilic aromatic substitution of a Cl atom with a dimethylamino group has taken place. Within all four structures, an R22(8) N—H...O hydrogen‐bonding pattern is observed, connecting the CMP molecules, but the pattern differs depending on which O atom participates in the motif, either the ortho or para O atom with respect to the cyano group. Solvents and coformers are attached to these arrangements via single‐point O—H...O interactions in (1) and (2) or by additional R44(16) hydrogen‐bonding patterns in (3) and (4). Since the in situ nucleophilic aromatic substitution of the coformers occurs, the possible Watson–Crick C–G base‐pair‐like arrangement is inhibited, yet the cyano group of the CMP molecules participates in hydrogen bonds with their coformers, influencing the crystal packing to form chains.  相似文献   

15.
With the rapid development of modern industry, water pollution has become an intractable environmental issue facing humans worldwide. In particular, the organic dyes discharged into natural water from dyestuffs, dyeing and the textile industry are the main sources of pollution in wastewater. To eliminate these types of pollutants, degradation of organic contaminants through a photocatalytic technique is an effective methodology. To exploit more crystalline photocatalysts for the degradation of organic dyes, two coordination polymers, namely catena‐poly[[(3,5‐dicarboxybenzene‐1‐carboxylato‐κO 1)silver(I)]‐μ‐trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene‐κ2N :N ′], [Ag(C9H5O6)(C12H10N2)]n or [Ag(H2BTC)(3,4′‐bpe)]n , (I), and poly[[(μ3‐5‐carboxybenzene‐1,3‐dicarboxylato‐κ4O 1,O 1′:O 3:O 3)[μ‐trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene‐κ2N :N′ ]cadmium(II)] monohydrate], {[Cd(C9H4O6)(C12H10N2)]·H2O}n or {[Cd(HBTC)(3,4′‐bpe)]·H2O}n , (II), have been prepared by the hydrothermal reactions of benzene‐1,3,5‐tricarboxylic acid (H3BTC) and trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene (3,4′‐bpe) in the presence of AgNO3 or Cd(NO3)2·4H2O, respectively. These two title compounds have been structurally characterized by IR spectroscopy, elemental analysis, single‐crystal X‐ray diffraction and powder X‐ray diffraction. In (I), the AgI ions and organic ligands form a one‐dimensional coordination chain, and adjacent coordination chains are connected by Ag…O interactions to give rise to a two‐dimensional supramolecular network. Each two‐dimensional network is entangled with other equivalent networks to generate an infrequent interlocked 2D→3D (2D and 3D are two‐ and three‐dimensional, respectively) supramolecular framework. In (II), the CdII ions are bridged by the HBTC2− and 3,4′‐bpe ligands, which lie across centres of inversion, to give a two‐dimensional coordination network. The thermal stabilities and photocatalytic properties of the title compounds have also been studied.  相似文献   

16.
In recent years, coordination polymers constructed from multidentate carboxylate and pyridyl ligands have attracted much attention because these ligands can adopt a rich variety of coordination modes and thus lead to the formation of crystalline products with intriguing structures and interesting properties. A new coordination polymer, namely poly[[μ2‐1,6‐bis(pyridin‐3‐yl)‐1,3,5‐hexatriene‐κ2N:N′](μ3‐naphthalene‐1,4‐dicarboxylato‐κ4O1,O1′:O4:O4′)zinc(II)], [Zn(C12H6O4)(C16H14N2)]n, has been prepared by the self‐assembly of Zn(NO3)2·6H2O, naphthalene‐1,4‐dicarboxylic acid (1,4‐H2ndc) and 1,6‐bis(pyridin‐3‐yl)‐1,3,5‐hexatriene (3,3′‐bphte) under hydrothermal conditions. The title compound has been structurally characterized by IR spectroscopy, elemental analysis, powder X‐ray diffraction and single‐crystal X‐ray diffraction analysis. Each ZnII ion is six‐coordinated by four O atoms from three 1,4‐ndc2− ligands and by two N atoms from two 3,3′‐bphte ligands, forming a distorted octahedral ZnO4N2 coordination geometry. Pairs of ZnII ions are linked by 1,4‐ndc2− ligands, leading to the formation of a two‐dimensional square lattice ( sql ) layer extending in the ab plane. In the crystal, adjacent layers are further connected by 3,3′‐bphte bridges, generating a three‐dimensional architecture. From a topological viewpoint, if each dinuclear zinc unit is considered as a 6‐connected node and the 1,4‐ndc2− and 3,3′‐bphte ligands are regarded as linkers, the structure can be simplified as a unique three‐dimensional 6‐connected framework with the point symbol 446108. The thermal stability and solid‐state photoluminescence properties have also been investigated.  相似文献   

17.
Convergent syntheses of the 9‐(3‐X‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranosyl)adenines 5 (X=N3) and 7 (X=NH2), as well as of their respective α‐anomers 6 and 8 , are described, using methyl 2‐azido‐5‐O‐benzoyl‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranoside ( 4 ) as glycosylating agent. Methyl 5‐O‐benzoyl‐2,3‐dideoxy‐2,3‐difluoro‐β‐D ‐ribofuranoside ( 12 ) was prepared starting from two precursors, and coupled with silylated N6‐benzoyladenine to afford, after deprotection, 2′,3′‐dideoxy‐2′,3′‐difluoroadenosine ( 13 ). Condensation of 1‐O‐acetyl‐3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐β‐D ‐ribofuranose ( 14 ) with silylated N2‐palmitoylguanine gave, after chromatographic separation and deacylation, the N7β‐anomer 17 as the main product, along with 2′‐deoxy‐2′‐fluoroguanosine ( 15 ) and its N9α‐anomer 16 in a ratio of ca. 42 : 24 : 10. An in‐depth conformational analysis of a number of 2,3‐dideoxy‐2‐fluoro‐3‐X‐D ‐ribofuranosides (X=F, N3, NH2, H) as well as of purine and pyrimidine 2‐deoxy‐2‐fluoro‐D ‐ribofuranosyl nucleosides was performed using the PSEUROT (version 6.3) software in combination with NMR studies.  相似文献   

18.
The design and synthesis of metal–organic frameworks (MOFs) have attracted much interest due to the intriguing diversity of their architectures and topologies. However, building MOFs with different topological structures from the same ligand is still a challenge. Using 3‐nitro‐4‐(pyridin‐4‐yl)benzoic acid (HL) as a new ligand, three novel MOFs, namely poly[[(N,N‐dimethylformamide‐κO)bis[μ2‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ3O,O′:N]cadmium(II)] N,N‐dimethylformamide monosolvate methanol monosolvate], {[Cd(C12H7N2O4)2(C3H7NO)]·C3H7NO·CH3OH}n, ( 1 ), poly[[(μ2‐acetato‐κ2O:O′)[μ3‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ3O:O′:N]bis[μ3‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ4O,O′:O′:N]dicadmium(II)] N,N‐dimethylacetamide disolvate monohydrate], {[Cd2(C12H7N2O4)3(CH3CO2)]·2C4H9NO·H2O}n, ( 2 ), and catena‐poly[[[diaquanickel(II)]‐bis[μ2‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ2O:N]] N,N‐dimethylacetamide disolvate], {[Ni(C12H7N2O4)2(H2O)2]·2C4H9NO}n, ( 3 ), have been prepared. Single‐crystal structure analysis shows that the CdII atom in MOF ( 1 ) has a distorted pentagonal bipyramidal [CdN2O5] coordination geometry. The [CdN2O5] units as 4‐connected nodes are interconnected by L? ligands to form a fourfold interpenetrating three‐dimensional (3D) framework with a dia topology. In MOF ( 2 ), there are two crystallographically different CdII ions showing a distorted pentagonal bipyramidal [CdNO6] and a distorted octahedral [CdN2O4] coordination geometry, respectively. Two CdII ions are connected by three carboxylate groups to form a binuclear [Cd2(COO)3] cluster. Each binuclear cluster as a 6‐connected node is further linked by acetate groups and L? ligands to produce a non‐interpenetrating 3D framework with a pcu topology. MOF ( 3 ) contains two crystallographically distinct NiII ions on special positions. Each NiII ion adopts an elongated octahedral [NiN2O4] geometry. Each NiII ion as a 4‐connected node is linked by L? ligands to generate a two‐dimensional network with an sql topology, which is further stabilized by two types of intermolecular OW—HW…O hydrogen bonds to form a 3D supramolecular framework. MOFs ( 1 )–( 3 ) were also characterized by powder X‐ray diffraction, IR spectroscopy and thermogravimetic analysis. Furthermore, the solid‐state photoluminescence of HL and MOFs ( 1 ) and ( 2 ) have been investigated. The photoluminescence of MOFs ( 1 ) and ( 2 ) are enhanced and red‐shifted with respect to free HL. The gas adsorption investigation of MOF ( 2 ) indicates a good separation selectivity (71) of CO2/N2 at 273 K (i.e. the amount of CO2 adsorption is 71 times higher than N2 at the same pressure).  相似文献   

19.
Three new nickel(II) complexes formulated as [Ni2(1,3‐tpbd)(diimine)2(H2O)2]4+ [1,3‐tpbd = N,N,N′,N′‐tetrakis(2‐pyridylmethyl)benzene‐1,3‐diamine, where diimine is an N,N‐donor heterocyclic base like 1,10‐phenanthroline (phen),2,2′‐bipyridine (bpy), 4,5‐diazafluoren‐9‐one (dafo)], have been synthesized and structurally characterized by X‐ray crystallography: [Ni2(1,3‐tpbd)(phen)2(H2O)2]4+ (1), [Ni2(1,3‐tpbd)(bpy)2(H2O)2]4+(2) and [Ni2(1,3‐tpbd)(dafo)2(H2O)2]4+ (3). Single‐crystal diffraction reveals that the metal atoms in the complexes are all in a distorted octahedral geometry and in a trans arrangement around 1,3‐tpbd ligand. The interactions of the three complexes with calf thymus DNA (CT‐DNA) have been investigated by UV absorption, fluorescence spectroscopy, circular dichroism and viscosity. The apparent binding constant (Kapp) values are calculated to be 1.91 × 105 m ?1 for 1, 1.18 × 105 m ?1 for 2, and 1.35 × 105 m ?1 for 3, following the order 1 > 3 > 2. The higher DNA binding affinity of 1 is due to the involvement in partial insertion of the phen ring between the DNA base pairs. A decrease in relative viscosities of DNA upon binding to 1–3 is consistent with the DNA binding affinities. These complexes efficiently display oxidative cleavage of supercoiled DNA in the presence of H2O2 (250 µ m ), with 3 exhibiting the highest nuclease activity. The rate constants for the conversion of supercoiled to nicked DNA are 5.28 × 10?5 s?1 (for 1), 6.67 × 10?5 s?1 (for 2) and 1.39 × 10?4 s?1 (for 3), also indicating that complex 3 shows higher catalytic activity than 1 and 2. Here the nuclease activity is not readily correlated to binding affinity. The inhibitory effect of complexes 1–3 on thioredoxin reductase has also been examined. The IC50 values are calculated to be 26.54 ± 0.57, 31.03 ± 3.33 and 8.69 ± 2.54 µ m , respectively, showing a more marked inhibitory effect on thioredoxin reductase by complex 3 than the other two complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The reaction of 4,4′‐bis(1,2,4‐triazol‐1‐ylmethyl)biphenyl (btmb) with silver(I) salts of BF4, NO3 and N3 led to the formation of four new silver(I) coordination polymers {[Ag(btmb)]BF4}n ( 1 ), {[Ag2(btmb)3](NO3)2(H2O)5}n ( 2 ), [Ag2(btmb)(N3)2]n ( 3 ), and [Ag(btmb)(N3)]n ( 4 ). Their coordination number varies from 2 (in 1 ) to 3 (in 2 ), 4 (in 3 ), and 5 (in 4 ). Different from the single chain structure of 1 , complex 2 displays a 1D ladder‐like double chain framework, whereas complex 3 exhibits a 2D layered architecture. Complex 4 has the same anion as complex 3 but shows a different metal‐to‐ligand ratio and a 1D double‐zigzag chain structure. Both 3 and 4 have Ag ··· Ag argentophilic interactions. The ligand btmb adopts both cis or trans configuration in the studied complexes. A trans‐ or cis‐btmb ligand link silver ions with Ag ··· Ag distances of ≈?18 and 13 Å, respectively. BF4 and NO3 are non‐coordinating anions in 1 and 2 . N3 is the bridging anion in 3 (1,3‐bridging fashion) and 4 (1,1‐bridging fashion). These findings suggest that the coordination numbers around the AgI ion correlate to the coordination abilities of anions and the btmb to silver ratio. In addition, the influence of anions on thermal stability were also investigated. This work is a good example that nicely supports the less explored field of anion‐dependent structures of complexes with non‐pyridyl ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号