首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of acrylic terpolymers containing silyl pendant groups was prepared by free radical cross-linking copolymerization. Me3Si, Et3Si and t-BuMe2Si together with cubane-1, 4-dicarboxylic acid (CDA) were covalently linked with 2-hydroxyethyl methacrylate (HEMA). The silyl-linked HEMA are abbreviated as TMSiEMA, TESiEMA and TBSiEMA respectively. Cubane-1, 4-dicarboxylic acid (CDA) linked to two HEMA group is the cross-linking agent (CA). Free radical cross-linking terpolymerization of the methyl methacrylate (MMA) and methacrylic acid (MAA) with two different molar ratios of organosilyl monomers and CA was carried out at 60–70 C. The compositions of the cross-linked three-dimensional polymers were determined by FT-IR spectroscopy. The glass transition temperature (Tg) of the network polymers was determined calorimetrically. The Tg of network terpolymers increases with increasing of cross-linking degree. Equilibrium swelling studies were carried out in enzyme-free simulated gastric and intestinal fluids (SGF and SIF, respectively). The gels swelled more in SIF than in SGF. The swelling behaviour of the copolymers was dependent on the content of MAA groups and caused a decrease in gel swelling in pH 1 or an increase in gel swelling in pH 7.4. Based on the great difference in swelling ratio at pH 1 and 7.4 for P-1, P-6 and P-10 appear to be good candidates for colon-specific drug delivery.  相似文献   

2.
A series of acrylic copolymers containing silyl pendant groups was prepared by free radical cross-linking copolymerization. Me3Si, Et3Si, and Ph3Si together with cubane-1,4-dicarboxylic acid (CDA) were covalently linked with 2-hydroxyethyl methacrylate (HEMA). CDA linked to two HEMA group is the cross-linking agent (CA). Free radical cross-linking copolymerization of the methacrylic acid (MAA) and organosilyl monomers with two different molar ratios of CA was carried out at 60–70°C. The compositions of the cross-linked three-dimensional polymers were determined by FT-IR spectroscopy. The glass transition temperature of the network polymers was determined calorimetrically. Equilibrium swelling studies were carried out in enzyme-free simulated gastric and intestinal fluids (SGF and SIF, respectively). A model hydrophobic drug, the steroid hormone estradiol, was entrapped in these gels, and the in vitro release profiles were established separately in both SGF (pH 1) and SIF (pH 7.4). Incorporation of silyl groups in a new macromolecule system modified network polymers for drug delivery.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

3.
Two anti-inflammatory drugs, indomethacin and aspirin together with cubane-1, 4-dicarboxylic acid (CDA) were covalently linked with 2-hydroxyethyl methacrylate (HEMA). The drug-linked HEMA (indomethacin-linked HEMA) is abbreviated as HI, aspirin-linked HEMA as HA and cubane-1, 4-dicarboxylic acid (CDA) linked to two HEMA group is the cross-linking agent (CA). A difunctional spacer group was introduced between the drugs and acrylic moiety of the monomer through a hydrolyzable ester linkage. Free radical cross-linking polymerization of the monomers with drug effect was carried out in dioxane solution at various CA ratios, using AIBN as initiator in the temperature range 60-70°C. The compositions of the cross-linked three-dimensional polymers were determined by FT-IR spectroscopy. The glass transition temperature (Tg) of the network polymers was determined calorimetrically. The hydrolysis of drug-polymer conjugates was carried out in cellophane membrane dialysis bags containing an aqueous buffer solution (pH 8 and pH 1) at 37°C. Detection of the hydrolysis product by UV spectroscopy shows that the drugs were released by hydrolysis of the ester bond located between the drug and spacer group.  相似文献   

4.
The homopolymer of 4‐chloromethylstyrene (P1) and its copolymers with styrene (in various mole ratios) were synthesized by bulk and solution free radical polymerizations, respectively, at 70 ± 1°C using α,α′‐azobis(isobutyronitrile) as an initiator. Lithiation of these soluble polymers in THF at −78°C was done and reacted with electrophiles such as tert‐BuMe2Si, Et3Si, and Me3SiCH2 in the presence of 4,4′‐di‐tert‐butylbiphenyl (DTBB) as a catalyst to produce modified polystyrene. In the other way, trimethylsilylmethyl lithium substitute as a nucleophile was covalently linked to the homopolymer and copolymer. The polymers were characterized by IR, 1H NMR, 13C NMR, differential scanning calorimetry (DSC), and gel permeation chromatography. DSC showed that incorporation of silyl substitute in the side chains of homopolymer and copolymers increases the rigidity of the polymers and, subsequently, their glass transition temperature. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:414–420, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20314  相似文献   

5.
The interaction between AlEt3 and silyl ethers, PhnSi(OMe)4-n (n = 0–3), was followed by 13C- and 29Si-NMR techniques in conditions close to those typical for an olefin polymerization reaction with supported Ziegler–Natta catalysts (A1Et3:silyl ether ratios from 1 to 10, temperature range 25–75°C). A1Et3 and silyl ethers form instantaneously at ambient temperature a donor-acceptor complex, which is stable at a 1:1 molar ratio. In the presence of excess A1Et3 the complex decomposes via a mechanism consisting, in the case of PhSi(OMe)3, of five consecutive steps: alternating complexation and ether reductions with the formation of alkylated silyl ethers, Ph(Et)nSi(OMe)3-n (n = 1,2), and dialkyl-aluminum alkoxides, (Et2A1OMe3)n (n = 2,3). The rate of decomposition was enhanced by the increasing number of methoxy groups present in the silyl ether, heating, or a high A1Et3:silyl ether ratio. The decomposition was not inhibited by the presence of 1-hexene.  相似文献   

6.
Silylium ions (“R3Si+”) are found to catalyze both 1,4‐hydrosilylation of methyl methacrylate (MMA) with R3SiH to generate the silyl ketene acetal initiator in situ and subsequent living polymerization of MMA. The living characteristics of the MMA polymerization initiated by R3SiH (Et3SiH or Me2PhSiH) and catalyzed by [Et3Si(L)]+[B(C6F5)4] (L = toluene), which have been revealed by four sets of experiments, enabled the synthesis of the polymers with well‐controlled Mn values (identical or nearly identical to the calculated ones), narrow molecular weight distributions (? = 1.05–1.09), and well defined chain structures {H? [MMA]n? H}. The polymerization is highly efficient too, with quantitative or near quantitative initiation efficiencies (I* = 96–100%). Monitoring of the reaction of MMA + Me2PhSiH + [Et3Si(L)]+[B(C6F5)4] (0.5 mol%) by 1H NMR provided clear evidence for in situ generation of the corresponding SKA, Me2C?C(OMe)OSiMe2Ph, via the proposed “Et3Si+”‐catalyzed 1,4‐hydrosilylation of monomer through “frustrated Lewis pair” type activation of the hydrosilane in the form of the isolable silylium‐silane complex, [Et3Si? H? SiR3]+[B(C6F5)4]. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1895–1903  相似文献   

7.
The controlled synthesis and characterization of a range of stimuli responsive cationic terpolymers containing varying amounts of N‐isopropylacrylamide (NIPAM), 3‐(methylacryloylamino)propyl trimethylammonium chloride (MAPTAC), and poly(ethylene glycol)monomethyl methacrylate (PEGMA) is presented. The terpolymers were synthesized using reversible addition‐fragmentation chain transfer (RAFT) polymerization. Compositions of the terpolymers determined using 1H NMR were in close agreement to the theoretical values determined from the monomer feed ratios. GPC‐MALLS was used to analyze the molecular weight characteristics of the polymers, which were found to have low polydispersities (Mw/Mn 1.1–1.4). The phase transitions were studied as a function of PEGMA and NIPAM content using temperature controlled 1H NMR and turbidity measurements (UV‐Vis). The relationship between thermal stability and the comonomer ratio of the polymers was measured using thermogravimetric analysis (TGA). Protein interaction studies were performed to determine the suitability of the polymers for biological applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4021–4029, 2008  相似文献   

8.
Hybrid 2‐vinylcyclopropanes were synthesised by the esterification of 1‐methoxycarbonyl‐2‐vinylcyclopropane‐1‐carboxylic acid with hydroxy group containing (meth)acrylates in the presence of 1,3‐dicyclohexylcarbodiimide (DCC). The structure of the new hybrid monomers was confirmed by elemental analysis, IR, 1H NMR and 13C NMR spectroscopy. The radical polymerisation of the hybrid monomers in bulk with 2,2'‐azoisobutyronitrile (AIBN) results in transparent cross‐linked polymers, whereas solution polymerisation partially results in soluble polymers with pendant 2‐vinylcyclopropyl groups.  相似文献   

9.
α‐Hydroxy and α,ω‐dihydroxy polymers of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) of various molecular weights were synthesized by group transfer polymerization (GTP) in tetrahydrofuran (THF), using 1‐methoxy‐1‐(trimethylsiloxy)‐2‐methyl propene (MTS) as the initiator and tetrabutylammonium bibenzoate (TBABB) as the catalyst. The hydroxyl groups were introduced by adding one 2‐(trimethylsiloxy) ethyl methacrylate (TMSEMA) unit at one or at both ends of the polymer chain. The ends were converted to 2‐hydroxyethyl methacrylate (HEMA) units after the polymerization by acid‐catalyzed hydrolysis. Gel permeation chromatography (GPC) in THF and proton nuclear magnetic resonance (1H‐NMR) spectroscopy in CDCl3 were used to determine the molecular weight and composition of the polymers. These mono‐ and difunctional methacrylate polymers can be covalently linked at the hydroxy termini to form star polymers and model networks, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1597–1607, 1999  相似文献   

10.
The synthesis by reversible addition‐fragmentation chain transfer (RAFT) polymerization of three phosphonated terpolymers with tailored architecture has been studied. A phosphonated methacrylate (MAUPHOS) was copolymerized with vinylidene chloride (VC2) and methyl acrylate (MA) to prepare a gradient terpolymer poly(VC2co‐MA‐co‐MAUPHOS). Besides, hydroxyethyl acrylate (HEA) was used as a functional monomer in RAFT polymerization to prepare a statistical poly(VC2co‐MA‐co‐HEA) terpolymer and a diblock poly(VC2co‐MA)‐b‐poly(HEA) terpolymer. The HEA‐containing polymers were then modified with a phosphonated epoxide to introduce the phosphonated group. The control of the polymerization was proven by kinetic studies (evolution of molecular weight vs. conversion) and by a successful block copolymerization. The architecture of the terpolymers was determined by the reactivity ratios of the monomers: terpolymerization of VC2, MA, and HEA leading to an ideal statistical terpolymer (no composition drift) whereas terpolymerization of VC2, MA, and the phosphonated methacrylate led to a gradient terpolymer. These terpolymers were characterized by size exclusion chromatography, 31P NMR and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 13–24, 2006  相似文献   

11.

New methacrylate monomers, 2‐{[(diphenylmethylene)amino]oxy}‐2‐oxoethyl methacrylate (DPOMA) and 2‐{[(1‐phenylethylidene)ami no]oxy}‐2‐oxoethyl methacrylate (MMOMA) were prepared by reaction of sodium methacrylate with diphenylmethanone O‐(2‐chloroacetyl) oxime and 1‐phenylethanone O‐(2‐chloroacetyl) oxime, respectively. They were obtained from a reaction of chloroacetyl chloride with benzophenone oxime or acetophenone oxime. The free‐radical‐initiated copolymerization of (DPOMA) and (MMOMA) with styrene (St) were carried out in 1,4‐dioxane solution at 65°C using 2,2‐azobisisobutyronitrile (AIBN) as an initiator with different monomer‐to‐monomer ratios in the feed. The monomers and copolymers were characterized by FTIR, 1H‐ and 13C‐NMR spectral studies. The copolymer compositions were evaluated by nitrogen content in polymers. The reactivity ratios of the monomers were determined by the application of Fineman–Ross and Kelen–Tüdös methods. The molecular weights (M¯w and M¯n) and polydispersity index of the polymers were determined by using gel permeation chromatography. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increase in the mole fraction of St in the copolymers. The activation energies of the thermal degradation of the polymers were calculated with the MHRK method. Glass transition temperatures of the copolymers were found to decrease with an increase in the mole fraction of DPOMA or MMOMA in the copolymers. The antibacterial and antifungal effects of the monomers and polymers were also investigated on various bacteria and fungi. The photochemical properties of the polymers were investigated by UV and FTIR spectra.  相似文献   

12.
《化学:亚洲杂志》2017,12(5):561-567
We describe herein the first synthesis of silyl‐ and disilanyl‐BODIPYs through transition‐metal‐catalyzed dehalosilylation of iodo‐BODIPYs using a Pd(P(t Bu)3)2/Et3N/toluene system. Various mono‐ and bis‐silyl‐BODIPYs, mono‐ and bis‐disilanyl‐BODIPYs and bis‐BODIPYs linked by silylene and SiOSi groups were synthesized by using this straightforward method. Silyl‐ and disilanyl‐substitution significantly modifies the spectroscopic properties of the BODIPY, in which the fluorescence quantum yields of the silyl‐BODIPYs are remarkably increased, whereas the emission spectra of disilanyl‐BODIPYs are red‐shifted due to effective σ(SiSi)–π(BODIPY) conjugation.  相似文献   

13.
The synthesis and characterization of new biocompatible “Polymeric Drugs” on the basis of poly (methacrylic esters) and poly (methacrylamides) with side substituents of pharmacological interest, with analgesic, antiinflammatory, antipyretic and antiaggregating activities, is reported. The preparation of these systems was carried out following the universal model suggested by Ringsdorf, and the polymers prepared by the free radical polymerization of the corresponding acrylic monomers were characterized by 1H- and 13C-NMR spectroscopies. Biocompatible hydrogels were prepared by free radical copolymerization of these monomers with HEMA. The characteristic copolymerization parameters and the microstructural distribution of comonomeric sequences were determined by NMR spectroscopy. The swelling behaviour of copolymer films was followed gravimetrically. Applications of polymer and copolymer systems are being tested in the fields of pharmacology and vascular surgery.  相似文献   

14.
In this article, we demonstrate the Passerini three‐component reaction as a simple, effective method for the synthesis of polymers with double functional end groups, which are key precursors for the preparation of ABC miktoarm terpolymers. Thus, via the one‐step Passerini reaction of monomethoxy poly(ethylene glycol)–propionaldehyde (PEG‐CHO) with 2‐bromo‐2‐methylpropionic acid and propargyl isocyanoacetamide, the PEG chain end was simultaneously functionalized with one atom transfer radical polymerization (ATRP) initiating site and one alkynyl group. The resulting PEG(‐alkynyl)‐Br was then used for the synthesis of three types of miktoarm ABC terpolymers via two approaches. First, we conducted ATRP of N‐isopropylacrylamide (NIPAM), then click reaction with azido‐terminated polystyrene (PS‐N3) or poly(tert‐butyl acrylate) (PtBA‐N3) and obtained two ABC miktoarm terpolymers PEG(‐b‐PNIPAM)‐b‐PS and PEG(‐b‐PNIPAM)‐b‐PtBA. Alternatively, we conducted single electron transfer living radical polymerization of tBA and click reaction with PS‐N3 simultaneously to give PEG(‐b‐PtBA)‐b‐PS. All the polymer precursors and miktoarm terpolymers have been characterized by 1H NMR, Fourier transform infrared, gel permeation chromatography, demonstrating that both approaches provided well‐defined ABC miktoarm terpolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
丙磺舒药物键合两亲共聚物的制备;丙磺舒; 两亲共聚物; 高分子药物  相似文献   

16.
The incorporation of 5‐vinyl‐2‐norbornene (VNB) into ethylene‐norbornene copolymer was investigated with catalysts [Ph2C(Fluo)(Cp)]ZrCl2 ( 1 ), rac‐[Et(Ind)2]ZrCl2 ( 2 ), and [Me2Si(Me4Cp)tBuN]TiCl2 ( 3 ) in the presence of MAO by terpolymerizing different amounts of 5‐vinyl‐2‐norbornene with constant amounts of ethylene and norbornene at 60°C. The highest cycloolefin incorporations and highest activity in terpolymerizations were achieved with 1 . The distribution of the monomers in the terpolymer chain was determined by NMR spectroscopy. As confirmed by XRD and DSC analysis, catalysts 1 and 3 produced amorphous terpolymer, whereas 2 yielded terpolymer with crystalline fragments of long ethylene sequences. When compared with poly‐(ethylene‐co‐norbornene), VNB increased both the glass transition temperatures and molar masses of terpolymers produced with the constrained geometry catalyst whereas decreased those for the metallocenes.  相似文献   

17.
Four novel helical poly(phenylacetylene)s with amino‐functionalized cinchona alkaloid pendant groups connecting to the phenyl rings through a sulfonamide linkage were synthesized by the polymerization of the corresponding phenylacetylene monomers using Rh+(2,5‐norbornadiene)[(η6‐C6H5)B?(C6H5)3] (Rh(nbd)BPh4) as the catalyst. The optically active sulfonamide‐linked polymers adopted a helical conformation with an excess of one‐handedness as supported by the appearance of the induced Cotton effects in the main‐chain chromophore regions, and efficiently catalyzed the enantioselective methanolytic desymmetrization of a cyclic anhydride and aza‐Michael addition of aniline to chalcone, thereby producing the corresponding optically active products up to 86% enantiomeric excess. However, their enantioselectivities from the methanolytic desymmetrization were slightly lower than those catalyzed by the corresponding cinchona alkaloid‐bound monomers. On the other hand, during the asymmetric aza‐Michael addition, a unique enhancement of the enantioselectivity was observed for several sulfonamide‐linked helical polymers, and thus affording a remarkably higher enantioselectivity compared to those of the corresponding monomers and nonhelical polymers bearing the identical cinchona alkaloid residues. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2869–2879  相似文献   

18.
Various silyl enol ethers were employed as quenchers for the living radical polymerization of methyl methacrylate with the R Cl/RuCl2(PPh3)3/Al(Oi–Pr)3 initiating system. The most effective quencher was a silyl enol ether with an electron‐donating phenyl group conjugated with its double bond [CH2C(OSiMe3)(4‐MeOPh) ( 2a )] that afforded a halogen‐free polymer with a ketone terminal at a high end functionality [n ∼ 1]. Such silyl compounds reacted with the growing radical generated from the dormant chloride terminal and the ruthenium complex to give the ketone terminal via the release of the silyl group along with the chlorine that originated from the dormant terminal. In contrast, less conjugated silyl enol ethers such as CH2C(OSiMe3)Me were less effective in quenching the polymerization. The reactivity of the silyl compounds to the poly(methyl methacrylate) radical can be explained by the reactivity of their double bonds, namely, the monomer reactivity ratios of their model vinyl monomers without the silyloxyl groups. The lifetime of the living polymer terminal was also estimated by the quenching reaction mediated with 2a . © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4735–4748, 2000  相似文献   

19.
Carba‐closo‐dodecaborate anions with two functional groups have been synthesized via a simple two‐step procedure starting from monoamino‐functionalized {closo‐1‐CB11} clusters. Iodination at the antipodal boron atom provided access to [1‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 1 a ) and [2‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 2 a ), which have been transformed into the anions [1‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 1 b ), Ph ( 1 c ), Et3Si ( 1 d )) and [2‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 2 b ), Ph ( 2 c ), Et3Si ( 2 d )) by microwave‐assisted Kumada‐type cross‐coupling reactions. The syntheses of the inner salts 1‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 1 e ), Et3Si ( 1 f )) and 2‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 2 e ), Et3Si ( 2 f )) are the first examples for a further derivatization of the new anions. All {closo‐1‐CB11} clusters have been characterized by multinuclear NMR and vibrational spectroscopy as well as by mass spectrometry. The crystal structures of Cs 1 a , [Et4N] 2 a , K 1 b , [Et4N] 1 c , [Et4N] 2 c , 1 e , and [Et4N][1‐H2N‐2‐F‐12‐I‐closo‐1‐CB11H9]?0.5 H2O ([Et4N ]4 a ?0.5 H2O) have been determined. Experimental spectroscopic data and especially spectroscopic data and bond properties derived from DFT calculations provide some information on the importance of inductive and resonance‐type effects for the transfer of electronic effects through the {closo‐1‐CB11} cage.  相似文献   

20.
Imine macrocyclic ligand M1 was involved in homo‐ and co‐polymerization of some vinyl monomers via atom transfer radical polymerization technique (ATRP). Hereby, vinyl acetate, styrene and methyl acrylate monomers were homopolymerized. On the other hand, they were involved in copolymerization with MMA. M1∶CuBr∶initiator∶monomer percentages were 1∶2∶4∶400. 1HNMR confirmed the structures of the resulting polymers. The thermal behaviors of some selected polymers were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号