首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以阳极氧化铝膜 (AAO)作模板 ,制备聚苯胺 (PANI)纳米管和PANI纳米管列阵 ;同时利用溶胶_凝胶法制备ZnO_PANI同轴纳米线和同轴纳米线列阵 .PANI纳米管和ZnO_PANI同轴纳米线的形貌通过透射电子显微镜表征 .PANI纳米管的外径约 3 0nm ,内径约 1 0nm ;ZnO_PANI同轴纳米线直径约 60nm .实验发现 ,较之ZnO纳米线 ,同轴AAO模板中纳米线列阵的可见光发射谱带兰移 ,强度显著增强 ,这可能和PANI链上的NH基团与表面Zn2 +离子之间的相互作用有关 ,以及由于ZnO纳米微粒在PANI上富集、PANI的光生载流子部分转移给ZnO微粒所致 .实验还发现分散在NaOH溶液中的同轴纳米线 ,其可见光发射谱带比AAO模板中同轴纳米线的谱带兰移更甚  相似文献   

2.
A new electrochemiluminescence (ECL) sensing interface was established based on the zinc oxide nanorod in this paper. Firstly, the zinc oxide (ZnO) nanorod was prepared on an indium tin oxide (ITO) electrode surface by the method of constant current cathodic electrodeposition, on which the Nafion film was then modified, and finally ruthenium(II) tris(bipyridine) (Ru(bpy)32+) was immobilized at the ZnO nanorod/Nafion composite‐modified electrode. The sensing interface shows well ECL behaviors and perfect stability after being constant temperature treatment at 80 °C. The composite electrode was characterized by EIS, SEM and XRD. The results showed that the good stability maybe related to the water content of Nafion film.  相似文献   

3.
Thin toluidine blue (TBO) and zinc oxide (ZnO) hybrid films have been grown on glassy carbon electrode (GCE) and indium tin oxide coated (SnO2) glass electrodes by using cyclic voltammetry (CV). Scanning electron microscopy (SEM) images revealed spherical and beads‐like shape of highly oriented TBO/ZnO hybrid films. Energy dispersive spectrometry (EDS) results declared that the films composed mainly of Zn and O. Moreover, TBO/ZnO hybrid films modified electrode is electrochemically active, dye molecules were not easily leached out from the ZnO matrix and the hybrid films can be considered for potential applications as sensor for amperometric determination of reduced nicotinamide adenine dinucleotide (NADH) at 0.0 V. A linear correlation between electrocatalytic current and NADH concentration was found to be in the range between 25 μM and 100 μM in phosphate buffer. In addition, we observed that dopamine, ascorbic acid and uric acid are not interference in amperometric detection of NADH in this proposed method. In addition, TBO/ZnO hybrid film modified electrode was highly stable and its response to the NADH also remained relentless.  相似文献   

4.
An electroactive polynuclear hybrid films of zinc oxide and zinc hexacyanoferrate (ZnO/ZnHCF) have been deposited on electrode surfaces from H2SO4 solution containing Zn(NO3)2 and K3[Fe(CN)6] by repetitive potential cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. There are two redox couples present in the voltammograms of hybrid film and it is obvious in the case of pH 2. Surface morphology of hybrid film was investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Energy dispersive spectrometer (EDS) data confirm existence of zinc oxide in the hybrid film. The effect of type of monovalent cations on the redox behavior of resulting film was investigated. In pure supporting electrolyte, electrochemical responses of modified electrode resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF hybrid film was investigated towards guanine using cyclic voltammetry and rotating disc electrode (RDE) techniques. Finally, feasibility of using ZnO/ZnHCF hybrid film‐coated electrodes for guanine estimation in flow injection analysis (FIA) was also investigated.  相似文献   

5.
采用氯化铵-氨水体系溶解试样,干过滤后,向移取的滤液中加入氯化钡和硫酸共沉淀铅离子,过滤分离硫酸铅沉淀,向滤液中加人抗坏血酸、氟化钾、硫代硫酸钠等掩蔽剂掩蔽少量干扰元素。在pH=5~6的乙酸-乙酸钠缓冲溶液中,以二甲酚橙为指示剂,用EDTA标准滴定溶液滴定测得结果为氧化锌、水溶性锌和镉合量,扣除由原子吸收光谱法测得的水溶性锌量和镉量,即为氧化锌量。对总氨浓度、氯化铵-氨水浓度比、溶液加入量、搅拌时间、共存离子干扰、精密度等进行了实验,建立了EDTA滴定法测定含锌物料中氧化锌物相的分析方法。实验证明,氧化锌含量在24%~83%时,方法精密度(RSD)为0.25%~0.54%,加标回收率在99%~104%,完全满足含锌物料中氧化锌的测定要求。  相似文献   

6.
以氧化铟锡透明导电膜玻璃(ITO)做载体,先在室温下采用浸渍-提拉法制备出ZnO纳米晶作为种子层,再结合低成本的水热生长法合成了一维有序的ZnO纳米棒阵列.结合X射线衍射(XRD)、扫描电子显微镜(SEM)和能量色散谱仪(EDS)表征,研究了前驱液浓度、溶胶陈化时间、种子层提拉次数、水热生长时间和次数等5种因素对ZnO纳米棒的结构及形貌的影响.研究结果表明, ZnO纳米棒阵列的长度和直径会随着前驱液的浓度和溶胶陈化时间以及水热生长时间的延长而增加.当前驱液浓度为0.5 mol·L-1时,陈化时间为24 h,浸渍-提拉3次,水热反应3次,每次反应时间为150 min时,可得到一维有序的ZnO纳米棒阵列.  相似文献   

7.
We report on the studies relating to fabrication of gelatin B (GB) and zinc oxide (ZnO) based nanocomposite (GB‐ZnO) film deposited on indium‐tin‐oxide (ITO) glass plate, and used for the immobilization of ascorbate oxidase (AsOx) which was further used for ascorbic acid (AA) detection. The structural and morphological studies of GB‐ZnO, and AsOx/GB‐ZnO/ITO bioelectrodes were carried out using XRD, SEM and FTIR techniques. This bioelectrode showed a broad range of linearity (5–500 mg/dL), low detection limit (1 mg/dL), higher sensitivity (0.106 µA mg/dLcm?2) and low value of the apparent Michaelis? Menten constant (Kmapp=0.35 mg/dL) for AA. Efforts are being made to utilize this electrode for sensing AA in real samples in a bid to develop a strip based sensor.  相似文献   

8.
Connected zinc oxide (ZnO) nanoparticles are successfully synthesized by a simple solution‐based chemical route that uses evaporation and concentration technology. The influences of processing parameters, especially the evaporation and concentration time on the size and morphology of the nanoparticles, have been investigated by transmission electron microscopy (TEM) and high‐resolution TEM (HRTEM). The structure and optical properties are systematically characterized by X‐ray diffraction (XRD), UV/Vis spectrophotometery, and fluorescence spectroscopy (FL). It is found that the average diameter and morphology are strongly affected by the evaporation and concentration time. Additionally, the formation mechanism of the nanoparticles is also discussed. The studies revealed that the evaporation and concentration are important aggregation or nucleation processes for ZnO growth, which leads to the macro‐differences in morphology. These results provide some insight into the growth mechanism of ZnO nanostructures. The synthetic strategy developed in this study may also be extended to the preparation of other nanomaterials and promising applications in various fields of nanotechnology.  相似文献   

9.
Superhydrophobic surface was prepared on the zinc substrate by chemical solution method via immersing clean pure zinc substrate into a water solution of zinc nitrate hexahydrate[Zn(NO3)2·6H2O] and hexamethylenetetraamine( C6H12N4) at 95 ℃ in water bath for 1.5 h, then modified with 18 alkanethiol. The best resulting surface shows superhydrophobic properties with a water contact angle of about 158° and a low water roll-off angle of around 3°. The prepared samples were characterized by powder X-ray diffraction(XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy(EDX), transmission electron microscopy(TEM), and scanning electron microscopy(SEM). SEM images of the films show that the resulting surface exhibits flower-shaped micro- and nano-structure. The surfaces of the prepared films were composed of ZnO nanorods which were wurtzite structure. The special flower-like micro- and nano-structure along with the low surface energy leads to the surface superhydrophobicity.  相似文献   

10.
The objective of this research was to use combustion synthesis to create a nano‐sized ZnO photocatalyst using citric acid as the fuel and zinc nitrate as the oxidant. The starting materials were mixed in a stoichiometric ratio, and a slurry precursor with high homogeneity was formed. The precursor was ignited at room temperature, resulting in dry, loose, and voluminous ZnO powders. The powders, characterized by SEM, TEM and XRD, showed a particle size range of 40 to 80 nm with a wurtzite structure. The ZnO powders were introduced as a photocatalyst for the degradation of methyl orange, which was adopted as a model compound. UV light (6W) was used as the irradiation source to induce synthesized ZnO powders to perform catalytic activity. The photocatalytic reaction was executed in 40 mL of a 10 ppm methyl orange aqueous solution under 254 nm UV illumination. In this work, it was observed that both UV light and ZnO powders are needed for the photocatalytic reaction. In addition, it was found that increasing the amount of ZnO powder present in the MO (methyl orange‐C14H14N3NaO3S) solution did not correlate directly with an increase in photocatalytic ability. It was found that the scattering problem of UV light also needs to be considered. The optimized photocatalytic degradation ratio in this work reached 92.7%.  相似文献   

11.
Nanostructured zinc and zinc oxide films were prepared by magnetron sputtering processes and succeeded air annealing treatments. Comparison of reductive degradation rate of methyl orange (MO) by zinc films and photocatalytic degradation rate of MO by zinc oxide films was carried out. Both reductive degradation and photocatalytic degradation process of MO by zinc and zinc oxide films can be described by first order kinetic model. It was found that although MO liquid was most quickly decolorized by metallic zinc films, the mineraliza-tion of MO was not thorough. Observation of extra ultraviolet absorption peaks indicated the formation of aromatic intermediates. On the other hand, although the photocatalytic degradation rate of MO liquid by ZnO films was only as about 1/4 large as the reductive degradation rate by zinc films, no signs of aromatic intermediates were found. Moreover, it was found that partially oxidized zinc oxide film showed higher photocatalytic efficiency than the totally oxidized ZnO films. Synergy effect between zinc and zinc oxide phase in the partially oxidized films was considered to be responsible for the higher photocatalytic efficiency.  相似文献   

12.
A method to prepare zinc oxide (ZnO) nanoparticles with a covalently bonded poly(methyl methacrylate) (PMMA) shell by surface initiated atom transfer radical polymerization (ATRP) was reported. First, the initiator for ATRP was covalently bonded onto the surface of zinc oxide nanoparticles through our novel method. Firstly, the surface of ZnO nanoparticle was treated with 3-aminopropyl triethoxysilane, a silane coupling agent, and then this functionalization nanoparticle was reacted with α-chloro phenyl acetyl chloride to prepare atom transfer radical polymerization macroinitiator. The metal-catalyzed radical polymerization of MMA with ZnOmacroinitiator was performed using a copper catalyst system to give the ZnO-based nanoparticles hybrids linking PMMA segments (poly (methyl methacrylate)/zinc oxide nanocomposite). These hybrid nanoparticles had an exceptionally good dispersability in organic solvents and were subjected to detailed characterization using FTIR, TEM and TGA and DSC analyzed.  相似文献   

13.
李清文  杨琴  夏熙 《电化学》1997,3(4):420
利用扫描电镜及交流阻抗技术研究不同电液组成(四种体系,即中性、EDTA络合、柠檬酸络合、KOH体系)及某些添加物(InCl3、Pb(Ac)2及三乙醇胺等)的存在对电沉积锌粉形貌及腐蚀性能的影响,结果表明,若在中性或碱性介质中加入某些添加物如In盐或Pb盐或采用Zn-EDTA介质可以改善锌粉的腐蚀性能.  相似文献   

14.
Interactions of ZnO nanoparticles with graphene oxide in isopropanol were studied; graphene oxide was shown to perform as an efficient substrate to immobilize zinc oxide nanoparticles on its surface. Interactions of nanocomposites consisting of graphene oxide-zinc oxide nanoparticles with supercritical isopropanol were studied. The conversion of graphene oxide into graphene does not appreciably changes the composition, morphology, or structure of ZnO nanoparticles.  相似文献   

15.
以醋酸锌和膨胀石墨为原料, 采用真空辅助压力诱导手段使反应溶液注入膨胀石墨层间, 在180℃下溶剂热反应12 h, 一步得到氧化锌纳米棒/石墨烯复合光催化剂, 采用X射线衍射仪(XRD)和透射电子显微镜(TEM)等对复合光催化剂的结构和形貌进行了表征. 结果表明, 合成的氧化锌纳米棒具有六方晶系纤锌矿结构; 氧化锌纳米棒在石墨烯表面分散性较好, 其平均直径约50 nm, 长度约150~200 nm. 所得氧化锌纳米棒/石墨烯复合材料对亚甲基蓝的降解效率优于目前应用最广泛的光催化剂Degussa P25.  相似文献   

16.
MCM‐41‐supported ZnO?Cu(OH)Cl nanoparticles were synthesized via an incipient wetness impregnation technique using zinc chloride and copper chloride salts as well as water at room temperature. The catalyst was characterized by powder X‐ray diffraction (PXRD), infrared spectroscopy (IR), and TGA, whereas surface and morphological studies were performed by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The above studies revealed the incorporation of metal species into the pores of MCM‐41, leading to a decrease in surface area of the nanoparticles that was found to be 239.079 m2/g. The substituents attached to the ketone determine the rate of the reaction, and the utilization of the green solvent ‘water’ astonishingly completes the hydrogenation reaction in 45 minutes at 40 °C with 100% conversion and 100% selectivity as analyzed by gas chromatography‐mass spectrometry. Hence, ZnO?Cu(OH)Cl/MCM‐41 nanoparticles with 2.46 wt% zinc and 6.39 wt% copper were demonstrated as an active catalyst for the reduction of ketones without using any gaseous hydrogen source making it highly efficient as well as environmentally and economically benign.  相似文献   

17.
Zinc sulfide (ZnS) nanoparticles were prepared by homogeneous hydrolysis of zinc sulfate and thioacetamide (TAA) at 80 degrees C. After annealing at a temperature above 400 degrees C in oxygen atmosphere, zinc oxide (ZnO) nanoparticles were obtained. The ZnS and ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and Brunauer-Emmett-Teller (BET)/Barrett-Joyner-Halenda (BJH) methods were used for surface area and porosity determination. The photocatalytic activity of as-prepared zinc oxide samples was determined by decomposition of Orange II dye in aqueous solution under UV irradiation of 365 nm wavelength. Synthesized ZnO were evaluated for their non-photochemical degradation ability of chemical warfare agents to nontoxic products.  相似文献   

18.
ZnO‐graphene composite was synthesized by using graphene oxide (GO), zinc acetate (Zn(CH3COO)2⋅2H2O), sodium hydroxide (NaOH) and ethylene glycol as precursors through a one‐pot hydrothermal process. The concentration of NaOH solution had an important effect on the morphology, defects and spectroscopic characterizations of the ZnO‐graphene composite. With the increase of concentration of NaOH solution, the morphology of the composite changed significantly. The morphological evolution was analyzed through SEM and TEM observations, and the Raman and PL spectral variations were discussed.  相似文献   

19.
The reaction of aliphatic alcohols such as methanol, ethanol and t-butanol with zinc powder at 330 °C under solvothermal conditions produces ZnO nanoparticles. The reaction involves the cleavage of the C-O bond of the alcohols, which occurs readily on the Zn metal surface. Addition of ethylenediamine to the reaction mixture yields nanorods, the amine acting as a shape-controlling agent. Dedicated to Professor Dieter Fenske  相似文献   

20.
海藻酸锌纤维热降解法制备氧化锌纳米结构   总被引:1,自引:0,他引:1  
采用天然高分子海藻酸钠为原料, 以氯化锌水溶液为凝固浴, 通过湿法纺丝技术成功制备了海藻酸锌(Alg-Zn)纤维.通过在空气中不同温度下对所得海藻酸锌纤维进行热处理, 得到了多种ZnO纳米结构. 利用热失重分析(TG)、X射线衍射(XRD)、电子能量损失谱(EELS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等手段对产物的组成、形貌和微观结构进行了详细表征. 结果表明, 焙烧温度和时间对所得ZnO纳米结构的尺寸和形貌具有重要影响; 800 ℃下热处理24 h以上可以得到直径约为120 nm的ZnO纳米棒. 通过仔细考察不同热处理时间得到的ZnO纳米结构, 提出了在焙烧条件下ZnO纳米棒的生长机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号