首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
3‐Methyl‐2‐benzofurancarboxylic acid hydrazide ( 2 ) reacts with carbon disulfide and pota‐ ssium hydroxide to give the corresponding potassium carbodithioate salt 3 . Treatment of the latter salt with hydrochloric acid, hydrazine hydrate, and with phen‐ acyl bromide afforded the corresponding 1,3,4‐oxadia‐ zole‐5‐thione 4 , 4‐amino‐1,2,4‐triazole‐5‐thione 5 , and thiazolidine‐2‐thione 9 derivatives, respectively. The reaction of either 1,3,4‐oxadiazole‐5‐thione 4 or 4‐amino‐1,2,4‐triazole‐5‐thione 5 with phenacyl bromide resulted in the formation of 1,2,4‐triazolo[3, 4‐b]‐1,3,4‐thiadiazine derivative 8 . Treatment of compounds 3 or 4 with hydrazonoyl halides 10a–d furn‐ ished the same 1,3,4‐thiadiazol‐2‐ylidene derivatives 11a–d . The 7‐arylhydrazono‐1,2,4‐triazolo[3,4‐ b ]‐1, 3,4‐thiadiazine derivatives 12a–d were obtained either by treatment of 4‐amino‐1,2,4‐triazole‐5‐thione 5 with hydrazonoyl halides 10a–d or by coupling of the 1,2,4‐triazolo[3,4‐b]‐1,3,4‐thiadiazine derivative 8 with diazonium salts. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:621–627, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20162  相似文献   

2.
Some inimitable and therapeutic coumarin‐substituted fused[1,2,4]triazolo‐[3,4‐b][1,3,4]thiadizole derivatives were synthesized by the cyclocondensation reaction of 2‐oxo‐2H‐chromene‐3‐carboxylic acid ( 1 ) and 4‐amino‐5‐hydrazinyl‐4H‐[1,2,4]‐triazole‐3‐thiol ( 2 ) by using phosphorous oxychloride as a cyclizing agent. This cyclized intermediate 3‐(3‐hydrazino‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazol‐6‐yl)‐chromen‐2‐one ( 3 ) later condensation with various ethyl 2‐(2‐arylhydrazono)‐3‐oxobutanoates ( 4 ) in NaOAc/MeOH under reflux conditions afforded the corresponding new series of aryl‐substituted hydrazono‐pyrazolyl‐[1,2,4]triazolo[3,4‐b][1,3,4][thiadiazol]‐coumarin derivatives ( 5 ) in good to excellent yields. The structures of newly synthesized compounds were established on the basis of elemental analysis, IR, 1H NMR and mass spectroscopic studies.  相似文献   

3.
Treatment of 3‐(3‐methylbenzofuran‐2‐yl)‐3‐oxopropanenitrile ( 1 ) with phenyl isothiocyanate afforded the thioacetanilide derivative 3 , which when reacted with α‐haloketones, α‐halodiketones, and hydrazonoyl chlorides gives thiophene, 1,3‐oxathiole, and 1,3,4‐thiadiazole derivatives 6a,b, 10a,b and 14a–g , respectively. Treatment of 3‐methyl‐2‐benzofurancarboxylic acid hydrazide ( 15 ) with benzaldehyde followed by bromine afforded the 1,3,4‐oxadiazole derivative 18 . Treatment of the acid hydrazide 15 with phenyl isothiocyanate gave the thiosemicarbazide 20 . Compound 20 could be converted into 1,3,4‐oxadiazole, 1,2,4‐triazole‐3‐thione, and 1,3,4‐thiadiazole derivatives 21, 22 , and 23 , respectively. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:294–300, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20298  相似文献   

4.
Summary. 1-Carbethoxymethyl-4,6-dimethyl-1H-[1,2,3]triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione was synthesized and treated with hydrazine hydrate to give the corresponding hydrazide. The latter hydrazide was treated either with phenylisothiocyanate or with carbon disulfide/alc. KOH to afford the corresponding thiosemicarbazide and oxadiazole derivatives. Alkylation of 2-mercapto-1,3,4-oxadiazole with dimethyl sulfate or ethyl chloroacetate gave the corresponding 2-methylthio-, and 2-ethylthioglycolate derivatives. Formation of 1,3,4-thiadiazole, 5-mercapto-1,2,4-triazole, and 1,3,4-oxadiazole were carried out by treating of the latter thiosemicarbazide with conc. H2SO4, NaOH/HCl, and HgO. Treating of 5-mercapto-1,2,4-triazole with ethyl chloroacetate afforded the thioglycolate ester. Hydrolysis of the latter with hydrazine hydrate afforded the hydrazide derivatives. Condensation of these hydrazides with monosaccharide aldoses gave the corresponding sugar hydrazones. The novel compounds were tested for antiviral activity against hepatitis B virus and showed moderate activities.  相似文献   

5.
Phenylacetyl isothiocyanate (1) was reacted with benzoyl hydrazine (2a) in acetonitrile to give thiosemicarbazide derivative 3 which was cyclized by polyphosphoric acid to give 1,2,4-triazoline-5-thione derivative 4. Treatment of 1 with thiosemicarbazide (2b) yielded another 1,2,4-triazoline-5-thione derivative 5. Similar treatment of 1 with phenyl hydrazine (2c) in acetonitrile gave a differently substituted 1,2,4-triazoline-5-thione derivative 6 in one pot-reaction. On the other hand, when the reaction was carried out in acetone, a mixture of 6 and thiadiazolidine derivative 7 was obtained. However, reaction of 1 with hydrazine hydrate (2d) gave hydrazine derivative 8. Reaction of isothiocyanate 1 with anthranilic acid (9) gave benzo[d][1,3,6]oxazin-1-one derivative 10. Treatment of 1 with 2-aminothiophenol (11a), 2-aminophenol (11b) or o-phenylenediamine (11c) produced benzothiazole derivative 12a, benzoxazole derivative 12b and benzimidazole derivative 12c, respectively. The structures of all the products were confirmed by micro-analytical and spectral data.  相似文献   

6.
A series of new 2,5‐disubstituted‐1,3,4‐oxadiazole and 1,2,4‐triazole derivatives were synthesized by heterocyclization of acid hydrazide 1 and thiosemicarbazide derivative 2 . Furthermore, the acyclic C‐nucleoside analogs were prepared by cyclization of their corresponding sugar hydrazones by reaction with acetic anhydride. The antimicrobial activity of the prepared compounds was evaluated and some of the synthesized compounds revealed good activities against fungi.  相似文献   

7.
The reaction of 2H‐2‐oxobenzo[b]pyran‐3‐hydrazide ( 2 ) with carbon disulfide in basic DMF afforded potassium thiocarbamate 3 , which readily underwent heterocyclization upon its reaction with hydrazine and/or phenacyl bromide to yield 1,2,4‐tiazole ( 4 ) and thiazole 7 derivatives, respectively. Condensation of 4 with substituted phenacyl bromide and/or chloranil gave 1,2,4‐triazole[3,4‐b]thiadiazine ( 5a,b ) and 3,10‐bis‐[2H‐2‐oxobenzo[b]pyran‐3‐yl]‐6,13‐dichloro‐bis‐1,2,4‐triazolo[3,4‐b]‐1,3,4‐thiadiazino[5′,6′‐b:5′,6′‐e]cyclohexa‐1,4‐diene ( 6 ), respectively. Cyclization of thiosemicarbazide 10 by refluxing it in sodium hydroxide and/or phosphoryl chloride afforded triazole 13 and thiadiazole 15 derivatives, respectively. Also, 10 reacted with phenacyl bromide in the presence of anhydrous sodium acetate to give the oxothiazolidine derivative 17 . The structure of the synthesized compounds were confirmed by elemental analyses, IR, 1H NMR, and mass spectra. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:114–120, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10109  相似文献   

8.
Two series of 7‐arylazo‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)pyrazolo[5,1‐c][1,2,4]triazol‐6(5H)‐ones 4 and 7‐arylhydrazono‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazines 7 were prepared via reactions of 4‐amino‐3‐mercapto‐5‐(2‐methyl‐1H‐indol‐3‐yl)‐1,2,4‐triazole 1 with ethyl arylhydrazono‐chloroacetate 2 and N‐aryl‐2‐oxoalkanehydrazonoyl halides 5 , respectively. A possible mechanism is proposed to account for the formation of the products. The biological activity of some of these products was also evaluated.  相似文献   

9.
The aroylhydrazides were prepared by esterification and hydrazinolysis of corresponding aromatic carboxylic acids.The reaction of aroylhydrazides with CS2/KOH in absolute ethanol gave potassium aroyldithiocarbazates and then hydrazinolysis of potassium aroyldithiocarbazates with hydrazine hydrate afforded 3-aryl-4-amino-5-mercapto-1,2,4-triazoles(1a~1g).New seven compounds of bis[(3-aryl)-s-triazolo[3,4-b]-[1,3,4]thiadiazole derivatives(2a~2g) were synthesized in high yields by cyclization of nonanedioic ac...  相似文献   

10.
The reaction of the hydrazide of pyridine‐4‐acetic acid with isothiocyanate gave thiosemicarbazide derivatives respectively. Further cyclization with 2% NaOH led to the formation of 4‐substituted 3‐(pyridin‐4‐ylmethyl)‐1,2,4‐triazoline‐5‐thione and 3‐(pyridin‐4‐ylmethyl)‐1,2,4‐triazoline‐5‐thione. The structures of all new products were confirmed by analytical and spectroscopic methods.  相似文献   

11.
2-Thioxo-1,2-dihydropyridine derivatives 2a, 2b were reacted with methyl iodide to give 2-methylthiopyridines 3a, 3b, which were reacted with hydrazine hydrate to produce 3-aminopyrazolo[5,4-b]pyridines 4a, 4b. Compounds 4a, 4b were diazotized to afford the corresponding diazonium salts 5a, 5b, which were reacted with some active methylene compounds 6a-6h to give the corresponding pyrido[2′,3′ : 3,4]pyrazole[5,1-c][1,2,4]triazines 7-14.  相似文献   

12.
Oxidative cyclization of the sugar hydrazones ( 3a‐f ) derived from {7H‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐ylsulfanyl}acetic acid hydrazide ( 1 ) and aldopentoses 2a‐c or aldohexoses 2d‐f with bromine in acetic acid in the presence of anhydrous sodium acetate, followed by acetylation with acetic anhydride gave the corresponding 2‐(per‐O‐acetyl‐alditol‐l‐yl)‐5‐methylthio{7H‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐yl}‐1,3,4‐oxadiazoles ( 5a‐f ). Condensative cyclization of the sugar hydrazones ( 3a‐f ) by heating with acetic anhydride gave the corresponding 3‐acetyl‐2‐(per‐O‐acetyl‐alditol‐1‐yl)‐2,3‐dihydro‐5‐methylthio{7‐acetyl‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐yl}‐1,3,4‐oxadiazoles ( 11a‐f ). De‐O‐acetylation of the acyclo C‐nucleoside peracetates ( 5 and 11 ) with methanolic ammonia afforded the hydrazono lactones ( 7 ) and the acyclo C‐nucleosides ( 12 ), respectively. The structures of new oxadiazole derivatives were confirmed by analytical and spectral data.  相似文献   

13.
α‐Imidazolformylarylhydrazine 2 and α‐[1,2,4]triazolformylarylhydrazine 3 have been synthesized through the nucleophilic substitution reaction of 1 with imidazole and 1,2,4‐triazole, respectively. 2,2′‐Diaryl‐2H,2′H‐[4,4′]bi[[1,2,4]‐triazolyl]‐3,3′‐dione 4 was obtained from the cycloaddition of α‐chloroformylarylhydrazine hydrochloride 1 with 1,2,4‐triazole at 60 °C and in absence of n‐Bu3N. The inducing factor for cycloaddition of 1 with 1,2,4‐triazole was ascertained as hydrogen ion by the formation of 4 from the reaction of 3 with hydrochloric acid. 4 was also acquired from the reaction of 3 with 1 and this could confirm the reaction route for cycloaddition of 1 with 1,2,4‐triazole. Some acylation reagents were applied to induce the cyclization reaction of 2 and 3.1 possessing chloroformyl group could induce the cyclization of 2 to give 2‐aryl‐4‐(2‐aryl‐4‐vinyl‐semicarbazide‐4‐yl)‐2,4‐dihydro‐[1,2,4]‐triazol‐3‐one 6. 7 was obtained from the cyclization of 2 induced by some acyl chlorides. Acetic acid anhydride like acetyl chloride also could react with 2 to produce 7D . 5‐Substituted‐3‐aryl‐3H‐[1,3,4]oxadiazol‐2‐one 8 was produced from the cyclization reaction of 3 induced by some acyl chlorides or acetic acid anhydride. The 1,2,4‐triazole group of 3 played a role as a leaving group in the course of cyclization reaction. This was confirmed by the same product 8 which was acquired from the reaction of 1 , possessing a better leaving group: Cl, with some acyl chlorides or acetic acid anhydride.  相似文献   

14.
Fourteen novel arylaldehyde (arylketone)‐(4‐substituted phenyl‐5‐substituted phenoxy‐methyl‐4H‐1,2,4‐triazole‐3‐yl)‐thiol acetyl hydrazone derivatives ( 5a‐5g, 6a‐6g ) were synthesized by 4‐substituted phenyl‐5‐substituted phenoxy‐methyl‐1,2,4‐triazole‐3‐thione as starting material according to substructure link principle, followed by thioetherification, hydrazide hydrazone reaction. The structures of these compounds were confirmed by IR, 1H NMR and elemental analysis. Crystal structure of compounds 1b and 6d were determined by the X‐ray diffraction.  相似文献   

15.
Treatment of heterocyclic β‐ketonitriles 1a,b with hydrazine hydrate and phenylhydrazine afforded the hydrazine derivatives 2a‐d which cyclized in PPA into pyrrolo[3,4‐c]pyrazoles 3a‐d. Reaction of 1a,b with cyanoacetohydrazide furnished the cyanoacetyl pyrrolo[3,4‐c]pyrazoles 4a,b. The hydrazine 2c reacted with β‐diketone and β‐ketoesters to afford pyrazolyl‐pyrrolines 5‐7. Also the later hydrazine reacted with some D‐aldoses and aceteophenone to give the corresponding hydrazones 10‐12 and hydrazine carboxamide derivatives 15a,b respectively.  相似文献   

16.
1-Carbethoxymethyl-4,6-dimethyl-1H-[1,2,3]triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione was synthesized and treated with hydrazine hydrate to give the corresponding hydrazide. The latter hydrazide was treated either with phenylisothiocyanate or with carbon disulfide/alc. KOH to afford the corresponding thiosemicarbazide and oxadiazole derivatives. Alkylation of 2-mercapto-1,3,4-oxadiazole with dimethyl sulfate or ethyl chloroacetate gave the corresponding 2-methylthio-, and 2-ethylthioglycolate derivatives. Formation of 1,3,4-thiadiazole, 5-mercapto-1,2,4-triazole, and 1,3,4-oxadiazole were carried out by treating of the latter thiosemicarbazide with conc. H2SO4, NaOH/HCl, and HgO. Treating of 5-mercapto-1,2,4-triazole with ethyl chloroacetate afforded the thioglycolate ester. Hydrolysis of the latter with hydrazine hydrate afforded the hydrazide derivatives. Condensation of these hydrazides with monosaccharide aldoses gave the corresponding sugar hydrazones. The novel compounds were tested for antiviral activity against hepatitis B virus and showed moderate activities.  相似文献   

17.
4‐Hydrazino‐2‐methylpyrimidino[4′,5′:4,5]thiazolo[3,2‐a]benzimidazole ( 4 ) was obtained from hydrazinolysis of the 4‐chloro derivative 3 with hydrazine hydrate. The hydrazino derivative 4 was further cyclized to the corresponding pyrazole 5 , pyrazolone 6 and 5‐methyl‐1,2,4‐triazolo[1″,5″:3′,4′]pyrimidino[5′,6′:5,4]‐thiazolo[3,2‐a]benzimidazole ( 9 ) and 5‐methy‐1,2,4‐triazolo[4″,3″:3′,4′]pyrimidino[5′,6′:5,4]thiazolo‐[3,2‐a]benzimidazole ( 10 ), respectively. The triazolo derivative 10 was isomerized to the triazolo derivative 9 under a variety of reaction conditions.  相似文献   

18.
The condensation of malonoaldehyde derivatives with either a 3‐amino‐[1,2,4]‐triazole or a 3,5‐diamino‐[1,2,4]‐triazole precursor was studied. In agreement with previous reports, two different bicycles, namely, bearing the regioisomeric [1,2,4]triazolo[1,5‐a]pyrimidine ( 1 ) or[1,2,4] triazolo [4,3‐a]pyrimidine ( 2 ) structural surrogates, could be obtained. We found that, depending on the triazole precursor, only one regioisomer resulted, either of the 1 or 2 series. We also observed that these two structural surrogates could be unambiguously differentiated by indirectly measuring their 15N chemical shifts by 1H? 15N HMBC experiments. The occasional conversion of [1,2,4]triazolo[4,3‐a]pyrimidines to the [1,2,4]triazolo[1,5‐a]pyrimidine counterparts could be unequivocally determined by 15N NMR data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Treatment of oxazolone 1 with hydrazine hydrate at room temperature gave the (Z)‐configurated isomer hydrazide (Z)‐ 3 (high yield). However, refluxing 1 with hydrazine hydrate yielded the (E)‐configurated isomer hydrazide (E)‐ 2 (low yield).The hydrazide derivative (Z)‐ 3 has been utilized as synthon for the synthesis of 1,2,4‐triazinone, imidazolone, and oxadiazole derivatives through appropriate routes. The thiosemicarbazide and semicarbazide derivatives are synthesized by different routes. The structures of the new compounds were established on the basis of IR, 1H‐NMR, mass spectral data, and elemental analysis.  相似文献   

20.
The reaction of 1H‐imidazole‐4‐carbohydrazides 1 , which are conveniently accessible by treatment of the corresponding esters with NH2NH2?H2O, with isothiocyanates in refluxing EtOH led to thiosemicarbazides (=hydrazinecarbothioamides) 4 in high yields (Scheme 2). Whereas 4 in boiling aqueous NaOH yielded 2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thiones 5 , the reaction in concentrated H2SO4 at room temperature gave 1,3,4‐thiadiazol‐2‐amines 6 . Similarly, the reaction of 1 with butyl isocyanate led to semicarbazides 7 , which, under basic conditions, undergo cyclization to give 2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones 8 (Scheme 3). Treatment of 1 with Ac2O yielded the diacylhydrazine derivatives 9 exclusively, and the alternative isomerization of 1 to imidazol‐2‐ones was not observed (Scheme 4). It is important to note that, in all these transformations, the imidazole N‐oxide residue is retained. Furthermore, it was shown that imidazole N‐oxides bearing a 1,2,4‐triazole‐3‐thione or 1,3,4‐thiadiazol‐2‐amine moiety undergo the S‐transfer reaction to give bis‐heterocyclic 1H‐imidazole‐2‐thiones 11 by treatment with 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione (Scheme 5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号