首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(12):1999-2013
Abstract

A simple, rapid, selective, and sensitive method for the derivative spectrophotometric determination of Hg(II) and its simultaneous determination in the presence of Zn(II) using 2‐(5‐bromo‐2‐pyridylazo)‐5‐diethylaminophenol in the presence of cetylpyridinium chloride, a cationic surfactant, has been developed. The molar absorption coefficient and analytical sensitivity of the 1∶1 Hg(II) complex at 558 nm (λmax) are 5.78×104 L mol?1 cm?1 and 0.67 ng mL?1, respectively. The detection limit of Hg(II) is 1.40×10?2 ng mL?1, and Beer's law is valid in the concentration range 0.05–2.40 µg mL?1. Overlapping spectral profiles of Hg(II) and Zn(II) complexes in zero‐order mode interfere in their simultaneous determination. However, 0.10–2.00 µg mL?1 of Hg(II) and 0.065–0.650 µg mL?1 of Zn(II), when present together, can be simultaneously determined at zero cross point of the derivative spectrum, without any prior separation. The relative standard deviation for six replicate measurements of solutions containing 0.134 µg mL?1 of Hg(II) and 0.620 µg mL?1 of Zn(II) is 1.72 and 1.47%, respectively. The proposed method has successfully been evaluated for trace level simultaneous determination of Hg(II) and Zn(II) in environmental samples.  相似文献   

2.
Conditions for the separation by reversed-phase liquid chromatography (LC) of V(V), Cu(II), Co(III), Pd(II), Fe(III) and Ni(II) chelates with 2-(5-bromopyridylazo)-5-diethylaminophenol (5-Br-PADAP) were studied. Six species of metal chelates were separated successfully with methanol-acetonitrile-water (72:12:16, v/v/v) containing 0.13 M NaCl and 0.29 mM cetyltrimethylammonium bromide (pH 5.0) as the mobile phase on a Nucleosil C18 (5 μm) column (250 × 4 mm i.d.).The conditions of the determination of these metal chelates are discussed. A simple and rapid method for the determination of trace amounts of V(V), Cu(II), Co(III), Pd(II) and Ni(II) simultaneously by reversed-phase LC has been developed. The detection limits are 5 × 10?12, 1 × 10?10, 3 × 10?11, 5.3 × 10?9 and 2 × 10?10 g, respectively. The method is applied to the determination of these metals in natural waters and mineral samples.  相似文献   

3.
A second‐derivative spectrophotometric method based on zero‐crossing over technique is developed in simultaneous determination of copper(II) and nickel(II) ions. Methylthymol blue (MTB) as a chromogenic reagent and cetyltrimethylammonium bromide as a surfactant were used, and measurements were carried out in buffered solution at pH 6 and at a temperature of 25 °C. The amplitude of derivative spectra was measured at wavelengths of 631.9 and 587.7 nm for the simultaneous determination of Ni2+ and Cu2+, respectively. Linearity was obtained in the range of 0.5–5.0 μg mL?1 for both ions in the presence of 0.0–5.0 μg mL?1 of the other ion as an interfering ion. IUPAC detection limits for Cu2+ and Ni2+ ions were obtained at 0.48 and 0.43 μg mL?1, respectively. The proposed procedure has been applied successfully for the simultaneous determination of copper and nickel in synthetic binary mixtures and real samples.  相似文献   

4.
A rapid, sensitive and selective method for the determination of nickel based on the rapid reaction of nickel(II) with 5-(4′-chlorophenylazo)-6-hydroxypyrimidine-2,4-dione (CPAHPD) and the solid phase extraction of the Ni(II)–CPAHPD complex with C18 membrane disks has been developed. In the presence of pH 6.8 buffer solution and cetylpyridinium bromide (CPB) medium, CPAHPD reacts with nickel to form a red complex of a molar ratio of 1:1 (nickel to CPAHPD). This complex was enriched by solid phase extraction (SPE) with C18 membrane disks. An enrichment factor of 100 was obtained by elution of the complex from the disks with the minimal amount of isopentyl alcohol. The molar absorptivity and Sandell sensitivity of the complex was 3.11 × 105 L mol?1 cm?1 and 0.0189 ng cm?2, respectively at 549 nm in the measured solution. Beer's law was obeyed in the range of 0.01–0.37 μg mL?1, while that obtained by Ringbom plot was in the range of 0.025–0.35 μg mL?1. The detection and quantification limits were calculated and found to be 0.003 and 0.01 μg mL?1. The proposed method was applied to the determination of nickel in water, food, biological and soil samples with good results.  相似文献   

5.
The present work describes the individual, selective and simultaneous quantification of acetaminophen (ACP) and tramadol hydrochloride (TRA) using a modification‐free boron‐doped diamond (BDD) electrode. Cyclic voltammetric measurements revealed that the profile of the binary mixtures of ACP and TRA were manifested by two irreversible oxidation peaks at about +1.04 V (for ACP) and +1.61 V (for TRA) in Britton‐Robinson (BR) buffer pH 3.0. TRA oxidation peak was significantly improved in the presence of anionic surfactant, sodium dodecyl sulfate (SDS), while ACP signal did not change. By employing square‐wave stripping mode in BR buffer pH 3.0 containing 8×10?4 mol L?1 SDS after 30 s accumulation under open‐circuit voltage, the BDD electrode could be used for quantification of ACP and TRA simultaneously in the ranges 1.0–70 μg mL?1 (6.6×10?6–4.6×10?4 mol L?1) and 1.0–70 μg mL?1 (3.3×10?6–2.3×10?4 mol L?1), with detection limits of 0.11 μg mL?1 (7.3×10?7 mol L?1) and 0.13 μg mL?1 (4.3×10?7 mol L?1), respectively. The practical applicability of the proposed approach was tested for the individual and simultaneous quantification of ACP and/or TRA in the pharmaceutical dosage forms.  相似文献   

6.
Piroxicam is a drug with analgesic and anti‐inflammatory properties. It is present in numerous pharmaceutical preparations. Injectable forms usually contain benzyl alcohol as an excipient, which is used as a blocking anesthetic (4%) and an antiseptic (4–10%). In this work, spectrophotometric methodology was used in order to determine benzyl alcohol in piroxicam injectable formulations by applying the fourth derivative method adopting the zero‐crossing technique. The results obtained show that the method has significant advantages over other reported methods and is appropriate for routine pharmaceutical analysis. The method showed excellent linearity in the range of 2–100 μg mL?1 with limit of detection (S/N = 3) 0.07 μg mL?1 (6.47 × 10?7 M). The proposed method could be applied successfully for the determination of benzyl alcohol in injectable formulations with average % recovery of 100 ± 0.61.  相似文献   

7.
This article the first reports on a fabrication and application of an electrochemical three electrode micro‐set containing: in situ plated lead film on carbon fiber working microelectrode, Ag/AgCl reference electrode and a platinum wire counter electrode placed in one casing for simultaneous Ni(II) and Co(II) traces determination by square wave adsorptive stripping voltammetry (SW AdSV). Ni(II) and Co(II) in forms of their complexes with nioxime were accumulated on the lead film plated on a carbon fibers microelectrode during standard procedure of measurement. Thanks to the fact that measurements were performed in micro‐vessel of a volume of 200 μl small amounts of reagents were used to prepare samples for measurements. In addition, because of the use of microelectrode, sample solutions were not mixed during accumulation step of measurements. This fact creates the possibility of conducting fields analysis. The experimental parameters (composition of the supporting electrolyte, potential and time of accumulation) and possible interference effects were investigated. The linear calibration graphs for Ni(II) and Co(II) were in the range from 2×10?9 to 1×10?7 mol L?1 and from 2×10?10 to 1×10?8 mol L?1 for Ni(II) and Co(II), respectively. The correctness of the proposed method was checked by determining Ni(II) and Co(II) in the certified reference material (SPS‐SW1) with satisfactory results.  相似文献   

8.
New synthesized reagent 2,6‐diacetylpyridine bis‐4‐phenyl‐3‐thiosemicarbazone (2,6‐DAPBPTSC) is proposed as a sensitive and selective analytical reagent for the extractive spectrophotometric determination of cobalt(II). Cobalt(II) forms a reddish brown colored complex with 2,6‐DAPBPTSC, which is extracted into isoamylalcohol, under optimum conditions. The maximum absorption of the isoamylalcohol extract is measured at 400 nm. Beer's law is applied in the range 0.6‐6.0 ppm of cobalt(II). The molar absorptivity and Sandell's sensitivity of the complex is calculated as 2.2 × 104 L mol?1 cm?1 and 2.68 × 10?3 μg cm?2, respectively. An adequate linearity with a correlation coefficient value of 0.969 is obtained for the Co(II)‐2,6‐DAPBPTSC complex. The instability constant of the complex, calculated from Asmus' method is 3.75 × 10?4 The precision and accuracy of the method is checked with calculation of relative standard deviation (n = 5), 0.388 and the detection limit a value is 0.0028 μg mL?1. The method is successfully employed for the determination of cobalt(II) in real samples, such as vegetables, soil, water samples, standard alloy samples, and the performance of the present method was evaluated in terms of Student ‘t’ test and Variance ‘f’ test, which indicates the significance of the present method is an inter comparison of the experimental values, using atomic absorption spectrometer (AAS).  相似文献   

9.
A selective and sensitive visible spectrophotometric method has been described for the quantitation of diltiazem hydrochloride in commercial dosage forms. The method is based on the reaction of the tertiary amino group of the drug with sodium hypochlorite to form the chloro drug derivative, followed by the destruction of the excess hypochlorite by sodium nitrite and the subsequent development of blue color takes place by the reaction of chloro derivative of drug with starch and potassium iodide in sodium bicarbonate medium. The maximum absorbance of the resulting blue solution is read at 540 nm. Under the optimized experimental conditions, Beer's law is obeyed in the concentration range of 2.5–25.0 μg mL?1 with a linear regression equation of A = 9.85 × 10?4 + 4.90 × 10?2 C and coefficient of correlation, r = 0.9999. The molar absorptivity is found to be 2.26 × 104L mol?1 cm?1. The limits of detection and quantitation of the proposed method are 0.12 and 0.37 μg mL?1, respectively. The proposed method has been successfully applied for the quantitation of diltiazem hydrochloride in commercial dosage forms. The results of the proposed method compared with those of Abdellatef's spectrophotometric method presented good mean recovery with acceptable true bias of all pharmaceutical samples within ± 2.0%.  相似文献   

10.
Two simple, sensitive and economical spectrophotometric methods have been developed for the determination of esomeprazole magnesium in commercial dosage forms. Method A is based on the reaction of esomeprazole magnesium with 5‐sulfosalicylic acid in methanol to form a yellow product, which absorbs maximally at 365 nm. Method B utilizes the reaction of esomeprazole magnesium with N‐bromosuccinimide in acetone‐chloroform medium to form α‐bromo derivative of the drug peaking at 380 nm. Under the optimized experimental conditions, Beer's law is obeyed in the concentration ranges of 2‐48 and 10‐100 μg mL?1 with molar absorptivity of 2.11 × 104 and 4.57 × 104L mol?1 cm?1 for methods A and B, respectively. The limits of detection for methods A and B are 0.35 and 0.46 μg mL?1, respectively. No interference was observed from excipients commonly present in tablet formulations. Methods A and B are successfully applied to the commercial tablets for the estimation of esomeprazole magnesium with good accuracy and precision. The results compare favorably with the reference spectrophotometric method indicating no significant difference between the methods compared.  相似文献   

11.
Cobalt (II) phthalocyanine tetracarboxylate [Co (II)Pc-COOH] has been prepared and used in aqueous solutions as a novel chromogenic reagent for the spectrophotometric determination of cyanide ion. The method is based on measuring the increase in the intensity of the monomer peak in the reagent absorbance at 682 nm due to the formation of a 1 : 2 [Co (II)Pc-COOH] : [CN] complex. The complex exhibits a molar absorptivity (ε) of 7.7 × 104 L mol?1 cm?1 and a formation constant (Kf ) of 5.4 ± 0.01 × 106 at 25 ± 0.1°C. Beer's law is obeyed over the concentration range 0.15–15 µg mL?1 (5.8 × 10?6–5.8 × 10?4 M) of cyanide ion, the detection limit is 20 ng mL?1 (7.7 × 10?7 M) the relative standard deviation is ±0.7% (n = 6) and the method accuracy is 98.6 ± 0.9%. Interference by most common ions is negligible, except that by sulphite. The proposed method is used for determining cyanide concentration in gold, silver and chromium electroplating wastewater bath solutions after a prior distillation with 1 : 1 H2SO4 and collection of the volatile cyanide in 1 M NaOH solution containing lead carbonate as recommended by ASTM, USEPA, ISO and APAHE separation procedures. The results agree fairly well with potentiometric data obtained using the solid state cyanide ion selective electrode.  相似文献   

12.
A spectrophotometric method to determine palladium(II) at trace levels is based on the extraction of palladium(II) as a binary complex with N-hydroxy-N,N′-diphenylbenzamidine (HDPBA) in chloroform at pH 5.0 ± 0.2. The complex shows maximum absorbance at 400 nm with molar absorptivity 6.4 × 103 L mol?1 cm?1. The sensitivity of the Pd(II)-HDPBA complex was enhanced by the addition of l-(2-pyridylazo)-2-naphthol (PAN). The green coloured complex shows maximum absorbance at 620 nm with molar absorptivity 1.58 × 104 L mol?1 cm?1. Sandell's sensitivity and the detection limit of the method are 0.0067 μg cm?2and 0.1 μg Pd(II) mL?1, respectively. Most common metal ions associated with palladium metal do not interfere. The effects of various analytical parameters on the extraction of the metal are discussed.  相似文献   

13.
A fast adsorptive stripping voltammetric procedure for simultaneous determination of Ni(II) and Co(II) in the presence of nioxime as a complexing agent at an in situ plated lead film electrode was described. The time of determination of these ions was shortened due to the application of gold as a substrate for lead film. At gold substrate lead film formation and accumulation of Ni(II) and Co(II) complexes with nioxime proceeds simultaneously. To obtain a stable signals for both ions a simple procedure of activation of the electrode was proposed. Calibration graphs for an accumulation time of 20 s were linear from 5×10?9 to 1×10?7 mol L?1 and from 5×10?10 to 1×10?8 mol L?1 for Ni(II) and Co(II), respectively. The procedure with the application of a lead film electrode on a gold substrate was validated in the course of Ni(II) and Co(II) determination in certified reference materials.  相似文献   

14.
A novel catalytic adsorptive stripping chronopotentiometric (CC‐CAdSCP) procedure for the determination of Co(II) traces was developed using a lead film electrode (PbFE). The PbFE was generated in situ on a glassy carbon support from a 0.1 M ammonia buffer containing 1×10?5 M Pb(II), 6.5×10?5 M DMG and the target metals. An addition of 0.2 M NaBrO3 to the solution yielded an 11‐fold catalytic enhancement of chronopotentiometric response of the Co(II)‐DMG complex. The CC‐CAdSCP curves were well‐developed, sharp and reproducible (RSD 5.0 % for 5×10?9 M Co(II)). The limit of detection for Co(II) for 210 s of accumulation time was 4×10?10 M (0.024 µg L?1). In addition, the elaborated method allowed the simultaneous quantification of Co(II) and Ni(II) simultaneously.  相似文献   

15.
A novel kinetic method for the determination of trace amounts of Co(II) has been developed. The proposed method based on the catalytic effect of Co(II) on the oxidation of xylenol orange tetra sodium salt by H2O2 in the presence of cationic surfactant (N‐dodecylpyridinium chloride). Co(II) at μg.mL?1 was determined spectrophotometrically by measuring the decrease in the absorbance of xylenol orange at 577 nm by the differential method. The method is precise, selective, and sensitive. The detection limit of the procedure was 0.058 μg.mL?1. The relative standard deviation for the replicate determination (n = 6) of 0.7 μg.mL?1 was 1.285%. The results compared satisfactorily with those of atomic absorption spectrometry. The method was successful for the analysis of Co(II) in veterinary and synthetic samples.  相似文献   

16.
A simple, rapid, selective and sensitive spectrophotometric method is described for the determination of trace amounts of manganese using Blue tetrazolium chloride as a chromogenic reagent. The method is based on the formation of ion-associate complex between manganese(VII) and the cation of ditetrazolium salt, having an absorption maximum at 255 nm. Beer’s law is obeyed in the range of 0.1–1.6 μg mL?1. The molar absorptivity and Sandell’s sensitivity were found to be 4.97 × 104 L mol?1 cm?1 and 1.11 × 10?3 μg cm?2, respectively. Limit of deterction is 6.86 ng mL?1 Mn(VII) and limit of quantitation is 22.8 ng mL?1 Mn(VII). Optimum reaction conditions were evaluated. The effect of interfering ions on the determination is described. The extraction, distribution and association constants, and the recovery factor have been calculated.  相似文献   

17.
《Analytical letters》2012,45(4):807-818
Abstract

A new method is described to analyse a binary mixture of atrazine and chlorpyrifos, using first-derivative spectrophotometry for atrazine and first derivative of the ratio spectra for chlorpyrifos. The procedure does not require any separation step. Calibration graphs were linear up to 15 μg.mL?1 of atrazine and to 10 μg.mL?1 of chlorpyrifos. The method has been applied to determine both compounds in pesticide formulations, in soils and waters.  相似文献   

18.
《Analytical letters》2012,45(10):993-1003
Abstract

The spectrophotometric study of reddish cyclohexane-1, 3-dione bis (4-methylthiosemicarbazone)-Zn(II) was made in dimethylformamide-water solution (λmax= 475 nm, ∑ = 3.3×104 1.mole?1. cm?1. Sandell sensitivity = 2×10?2 μg Zn(II).cm?2, stoichiometry 1:1, and apparent stability constant 6.1×104). A new method for the spectrophotometric determination of Zn(II) is proposed for concentrations between 0.1 and 2.5 ppm. The relative error (95% confidence level) is 0.7% for 1.0 pprn of Zn(II).

The extraction with ethylacetate of the reddish complex was also studied spectrophotometrically (λmax = 493 nm, ∑ in organic phase = 4.8×104 1.mole?1.cm. Sandell sensitivity = 3.4×10?4 μg Zn(II).cm?2, stoichiometry 1:1, apparent extraction constant 1.4×104). A new method for the extraction-spectrophotometric determination of Zn(II) is proposed for concentrations, in aqueous phase, between 0.02 and 0.30 ppm. The relative error (95% confidence level) is 1.0% for 0.15 pprn of Zn(II).  相似文献   

19.
A new reagent, benzyloxybenzaldehydethiosemicarbazone (BBTSC) was synthesized and a new method was developed for the simple, highly selective and extractive spectrophotometric determination of palladium(II) with BBTSC at wave length 365 nm. The metal ion formed a yellow colored complex with BBTSC in acetate buffer of pH 5.0, which was easily extractable into cyclohexanol with 1:1 (Metal: Ligand) composition. The method obeys Beer's law in the range of 5–60 ppm. The molar absorptivity and Sandell's sensitivity were found to be 0.4 × 104 Lt. mol?1 cm?1 and 0.02661 μg cm?2, respectively. The correlation co‐efficient of the Pd(II)‐BBTSC complex was 0.9657, which indicated an excellent linearity between the two variables. The repeatability of the method was checked by finding the relative standard deviation (RSD) (n = 10), which was 0.321% and its detection limit 0.016875 μg.mL?1. The instability constant of the method was calculated by Asmus' method as 3.5714 × 10?4. The interfering effect of various cations and anions were also studied. The proposed method was successfully applied for the determination of palladium(II) in synthetic and water samples. The results were compared with those obtained using an atomic absorption spectrophotometer, testing the validity of the method.  相似文献   

20.
2-(5-Bromo-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino)aniline rapidly forms a water-soluble complex with palladium in an acetate-buffered medium at pH 3.2.The molar absorptivity of the complex is 9.84×104l mol?1 at 612 nm. The calibration graph is linear over the range of 10–100 μg l?1 palladium; the detection limit is 2 μg l?1 and the relative standard deviation is 0.6% for 100 μg l?1 palladium. The sample throughput is 50 h?1. Divalent transition metals (Fe, Ni, Co) do not interfere at levels from 2 to 10 mg l?1. Interference from copper is prevented by adding 10?3 M EDTA solution to the carrier stream. Palladium in solutions of catalysts and dental alloys can be determined selectively, sensitively and rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号