共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of oxidation of Norfloxacin [1‐ethyl‐6‐fluoro‐1,4‐dihydro‐4‐oxo‐7‐(l‐piperazinyl)‐3‐quinoline carboxylic acid] by chloramine‐B and N‐chlorobenzotriazole has been studied in aqueous acetic acid medium (25% v/v) in the presence of perchloric acid at 323 K. For both the oxidants, the reaction follows a first‐order dependence on [oxidant], a fractional‐order on [Norfloxacin], and an inverse‐fractional order on [H+]. Dependence of reaction rate on ionic strength, reaction product, dielectric constant, solvent isotope, and temperature is studied. Kinetic parameters are evaluated. The reaction products are identified. The proposed reaction mechanism and the derived rate equation are consistent with the observed kinetic data. Formation and decomposition constants for substrate–oxidant complexes are evaluated. ©1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 153–158, 1999 相似文献
2.
Mohamed H. Elnagdi Nouria A. Al‐Awadi Agith Kumar Mervat Abdul Khalik 《Heteroatom Chemistry》2001,12(1):47-51
Gas‐phase pyrolysis reactions of 4(2′‐dimethylaminoethenyl)‐2‐oxo‐2H‐benzo[b]pyran‐3‐carbonitrile ( 1 ), 4(2′‐dimethylaminoethenyl)‐2‐oxo‐2H‐naphtho[1,2‐b]pyran‐3‐carbonitrile ( 2 ), 1,6‐dihydro‐4‐(2′‐dimethylaminoethenyl)‐6‐oxo‐1‐phenylpyridazine‐3,5‐dicarbonitrile ( 3 ), 2‐cyano‐5‐dimethylamino‐3‐phenyl‐2,4‐pentadienonitrile ( 4 ), 2‐cyano‐5‐dimethylamino‐3‐(2‐thienyl)‐2,4‐pentadienonitrile( 5 ), 1,2‐dihydro‐4‐(2′‐dimethylaminoethenyl)‐oxo‐quinoline‐4‐carbonitrile ( 6 ), 6‐(ethylthio)‐4‐(2′‐dimethylaminoethenyl)‐2‐phenylpyrimidine‐5‐carbonitrile ( 7 ) (Scheme 1) have been carried out. The rates of gas‐phase pyrolytic reactions of compounds 3, 4, 5, and 7 have been measured and found to correspond to unimolecular first‐order reactions. Product analyses together with kinetic data were used to outline a feasible pathway for the pyrolytic reactions of the compounds under study. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:47–51, 2001 相似文献
3.
S. Ananda M. B. Jagadeesha Puttaswamy B. M. Venkatesha T. K. Vinod N. M. Made Gowda 《国际化学动力学杂志》2000,32(12):776-783
Oxidations of n‐propyl, n‐butyl, isobutyl, and isoamyl amines by bromamine‐T (BAT) in HCl medium have been kinetically studied at 30°C. The reaction rate shows a first‐order dependence on [BAT], a fractional‐order dependence on [amine], and an inverse fractional‐order dependence on [HCl]. The additions of halide ions and the reduction product of BAT, p‐toluenesulfonamide, have no effect on the reaction rate. The variation of ionic strength of the medium has no influence on the reaction. Activation parameters have been evaluated from the Arrhenius and Eyring plots. Mechanisms consistent with the preceding kinetic data have been proposed. The protonation constant of monobromamine‐T has been evaluated to be 48 ± 1. A Taft linear free‐energy relationship is observed for the reaction with ρ* = −12.6, indicating that the electron‐donating groups enhance the reaction rate. An isokinetic relationship is observed with β = 350 K, indicating that enthalpy factors control the reaction rate. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 776–783, 2000 相似文献
4.
Xavier Ramis Josep María Salla Jordi Puiggalí 《Journal of polymer science. Part A, Polymer chemistry》2005,43(6):1166-1176
A potassium salt of N‐chloroacetyl‐11‐aminoundecanoate was thermally polymerized to obtain the corresponding poly(glycolic acid‐alt‐11‐aminoundecanoic acid). A kinetic study was then performed that was based on isothermal and nonisothermal polymerizations performed in a differential scanning calorimeter. The complete kinetic triplet was determined (the activation energy, pre‐exponential factor, and integral function of the degree of conversion). A kinetic analysis was performed with an integral isoconversional procedure (free model), and the kinetic model was determined both with the Coats–Redfern method (the obtained isoconversional value being accepted as the effective activation energy) and through the compensation effect. The polymerization followed a three‐dimensional growth‐of‐nuclei (Avrami) kinetic mechanism. Isothermal polymerization was simulated with nonisothermal data. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1166–1176, 2005 相似文献
5.
Dipeptides (DP), namely valyl–glycine (Val–Gly), alanyl–proline (Ala–Pro), and valyl–proline (Val–Pro) were synthesized by classical solution phase methods and characterized. The kinetics of oxidation of amino acids (AA) and DP by N‐bromosuccinimide (NBS) was studied in the presence of perchlorate ions in acidic medium at 28°C. The reaction was followed spectrophotometrically at λmax = 240 nm. The reactions follow identical kinetics, being first order each in [NBS], [AA], and [DP]. No effect on [H+], reduction product [succinimide], and ionic strength was observed. Effects of varying dielectric constant of the medium and addition of anions such as chloride and perchlorate were studied. Activation parameters have been computed. The oxidation products of the reaction were isolated and characterized. The proposed mechanism is consistent with the experimental results. An apparent correlation was noted between the rate of oxidation of AA and DP. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 376–385, 2006 相似文献
6.
Kinetics of oxidation of diethylamine (DEA) by Bromamine‐B (BAB) has been investigated at 303 K in acid solution with Ru(III) as catalyst. The oxidation behavior obeys the rate law, rate = k [BAB] [DEA] [Ru(III)] [H+]−x where ‘x’ is less than unity indicating retardation of rate by [H+]. Added halide ions, the reaction product benzenesulphonamide, variation of ionic strength and dielectric constant of the medium do not have any significant effect on the rate. The protonation constant of monobromamine‐B evaluated for the reaction is 32.3 at 303 K. Activation parameters have been evaluated from Arrhenius plot. A mechanism consistent with experimental results has been proposed. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 744–752, 1999 相似文献
7.
Makiko Seno Tomoya Fukui Tomohiro Hirano Tsuneyuki Sato 《Journal of polymer science. Part A, Polymer chemistry》2000,38(23):4264-4271
Polymerization of N‐(2‐phenylethoxycarbonyl)methacrylamide (PECMA) with dimethyl 2,2′‐azobisisobutyrate (MAIB) was investigated in tetrahydrofuran (THF) kinetically and by means of electron spin resonance (ESR). The overall activation energy of the polymerization was calculated to be 58 kJ/mol. The initial polymerization rate (Rp) is expressed by Rp = k[MAIB]0.3[PECMA]2.3 at 60 °C. Such unusual kinetics may be ascribable to primary radical termination and to acceleration of propagation due to monomer association. Propagating poly(PECMA) radical was observed as a 13‐line spectrum by ESR under practical polymerization conditions. ESR‐determined rate constants of propagation (kp, 4.7–10.5 L/mol s) and termination (kt, 4.6 × 104 L/ml s) at 60 °C are much lower than those of methacrylamide and methacrylate esters. The Arrhenius plots of kp and kt gave activation energies of propagation (24 kJ/mol) and termination (25 kJ/mol). The copolymerizations of PECMA with styrene (St) and acrylonitrile were examined at 60 °C in THF. Copolymerization parameters obtained for the PECMA (M1) − St(M2) system are as follows: r1 = 0.58, r2 = 0.60, Q1 = 0.73, and e1 = +0.22. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4264–4271, 2000 相似文献
8.
Seddique M. Ahmed 《国际化学动力学杂志》2003,35(6):260-272
Protonation of poly(o‐toluidine) base form (POT‐EB) with 5‐sulfosalicylic acid (SSA) was proved experimentally and computationally. Molecular mechanics (MM+) calculations showed that the potential energy (PE) of the optimum molecular geometric structure of SSA‐doped POT is 4.703 × 103 kcal mol?1 or at least three orders of magnitude higher than the PE of the molecular geometric structure of the same matrix. These calculations indicate that the optimization of this matrix is necessary for understanding the stability. Dark green coloration (λ ~800 nm) after addition of SSA into POT‐EB matrix (dark blue, λ ~600 nm) revealed that the SSA was working as a protonating agent to convert POT base form (POT‐EB) to salt form (SSA‐doped POT). The change of the dark green color of SSA‐doped POT to dark brown (λ ~500 nm) after addition of oxidant (K2CrO4) was due to the highest oxidized form of the matrix obtained (the quinoid one), which undergoes a hydrolysis reaction to produce p‐hydroquinone (H2Q) by a mechanism similar to Schiff‐base hydrolysis. Kinetic parameters of the oxidation reaction were deduced employing a computer‐aided kinetic analysis of the absorbance (A) at ~800 nm against the hydrolysis time (t) data. The results obtained indicate that the rate controlling process may be governed by the Ginstling–Brounshetin equation for three‐dimensional diffusion (D4). The proposed mechanism for the oxidation of SSA‐doped POT matrix is also supported by MM+ calculations. Activation parameters for the rate of the oxidation process of acid‐doped POT matrix have been computed and discussed. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 260–272, 2003 相似文献
9.
The kinetics of oxidation of nitrite to nitrate by peroxomonophosphoric acid in aqueous acid medium have been studied. The observed monotonic fall in rate with increasing pH of the medium has been rationalized on the basis of proton-dissociation equilibria of the substrate as well as the oxidant species. It is found that only HNO2 reacts with the different PMPA species. 相似文献
10.
We have undertaken a detailed study of the antioxidant activity of allicin, one of the main thiosulfinates in garlic, in order to obtain quantitative information on it as a chain-breaking antioxidant. The antioxidant actions of allicin against the oxidation of cumene and methyl linoleate (ML) in chlorobenzene were studied in detail using HPLC. The hydroperoxides formed during the course of the inhibited oxidation of ML were analyzed as their corresponding alcohols by HPLC, and it is apparent that an allylic hydrogen atom of the allicin is responsible for the antioxidant activity. Furthermore, it is clear that the radical-scavenging reactions of allicin proceed via a one-step hydrogen atom transfer based on the results of the reaction with 2,2-diphenyl-1-picrylhydrazyl (DPPH) in the presence of Mg2+ and calculation of the ionization potential value. In addition, we determined the stoichiometric factor (n), the number of peroxyl radicals trapped by one antioxidant molecule, of allicin by measuring the reactivity toward DPPH in chlorobenzene, and the value of n for allicin was about 1.0. Therefore, we measured the rate constants, k(inh), for the reaction of allicin with peroxyl radicals during the induction period of the cumene and the ML oxidation. As a result, we found that allicin reacts with peroxyl radicals derived from cumene and ML with the rate constants k(inh) = 2.6 x 10(3) M(-1)s(-1) and 1.6 x 10(5) M(-1)s(-1) in chlorobenzene, respectively. Our results demonstrate for the first time reliable quantitative kinetic data and the antioxidative mechanism of allicin as an antioxidant. 相似文献
11.
Reaction of peroxynitrite with estrone, a female sex hormone, was carried out in tetrahydrofuran (THF)/H2O (8: 2) basic solutions. The major products are the corresponding o-quinone, nitroestrone and 2,2′-biphenol. The reaction of phenols with peroxynitrite under the same conditions leads also
to the formation of quinones, nitrophenols and biphenols. The major mechanistic pathways take place via a one-electron oxidation
of the phenolic group leading to the formation of a phenoxyl radical intermediate which is further oxidized by peroxynitrite
(or by intermediates generated from peroxynitrite) to give the final products. A Hammett correlation of the rate constants
for the oxidation of meta substituted phenols support a radical mechanism. The kinetic isotope factors rule out the involvement
of a C-H bond cleavage in the rate-determining step. A multistep mechanism showing major intermediates involved in the reaction
and the final products has been proposed.
Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 1, pp. 96–105.
The article is published in the original. 相似文献
12.
Oxidation of sulfanilic acid to the corresponding azoxy derivative by peroxomonophosphoric acid (PMPA) has been studied in aqueous medium. The observed bell-shaped pH-rate profile has been rationalized on the basis of protonation of the amino group and ionization into different PMPA species and a suitable rate law has been proposed. The mechanism of oxidation involves the nucleophilic attack of nitrogen on the electrophilic peroxo oxygen.
- (PMPA) . pH— , PMPA . .相似文献
13.
N‐Bromophthalimide (NBP)‐triggered bromination of aromatic compounds has been studied in the presence of aqueous acetic acid. Reaction Kinetics indicated first order in [NBP] and zero order in [Anisole]. The reactions afforded very good yields of corresponding bromo derivatives under kinetic conditions. The mechanism of the reaction is explained through the formation of acetyl hypobromite due to the interaction of NBP and acetic acid, which in turn reacts with anisole to afford a bromo derivative of anisole. 相似文献
14.
15.
The bis(2,6-diisopropylphenylimido)methylrhenium(VII) sulfide dimer, [CH(3)Re(NAr)(2)](2)(mu-S)(2) (1), reacts with a 1:1 amount of a phosphine or an alkyl isocyanide to yield a dimeric rhenium(VI) species, [CH(3)Re(NAr)(2)](2)(mu-S) (2), which has been structurally characterized. The two rhenium atoms in 2 are within bonding distance, 280 pm, more than 90 pm shorter than in 1. With excess L, 1 reacts to give a monomeric rhenium(V) complex, CH(3)Re(NAr)(2)L(2) (3A, L = PZ(3), Z = alkyl, aryl; 3B, L = isocyanide). The rate of formation of 3A is first-order with respect to [1] and second-order with respect to monodentate phosphine concentrations. With bidentate phosphines, however, the order with respect to the phosphine drops to unity. The addition of another (nonoxidizable) coordinating ligand, such as pyridine or one of its derivatives, accelerates the formation of 3A. In the presence of a pyridine ligand the reaction is first-order with respect to phosphine concentration, both monodentate and bidentate. The reactions between phosphines and 2 are slower than those with 1, which excludes [CH(3)Re(NAr)(2)](2)(mu-S) from being the intermediate in the reactions of 1. To account for that, we have proposed an intervening species that partitions between transformation to 3 with excess L and to 2 otherwise. 相似文献
16.
M. Niyaz Khan 《国际化学动力学杂志》2002,34(2):95-103
The kinetics of the aqueous cleavage of N‐ethoxycarbonylphthalimide (NCPH) in CH3NHOH buffers of different pH reveals that the cleavage follows the general irreversible consecutive reaction path NCPH ENMBC A B , where ENMBC, A , and B represent ethyl N‐[o‐(N‐methyl‐N‐hydroxycarbamoyl)benzoyl]carbamate, N‐hydroxyl group cyclized product of ENMBC, and o ‐(N‐methyl‐N‐hydroxycarbamoyl)benzoic acid, respectively. The rate constant k1 obs at a constant pH, obeys the relationship k1 obs = kw + knapp [Am]T + kb[Am]T2, where [Am]T is the total concentration of CH3NHOH buffer and kw is first‐order rate constant for pH‐independent hydrolysis of NCPH. Buffer‐dependent rate constant kb shows the presence of both general base and general acid catalysis. Both the rate constants k2 obs and k3 obs are independent of [Am]T (within the [Am]T range of present study) at a constant pH and increase linearly with the increase in aOH with definite intercepts. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 95–103, 2002 相似文献
17.
Dr. Changgui Zhao Fangyi Li Prof. Dr. Jian Wang 《Angewandte Chemie (International ed. in English)》2016,55(5):1820-1824
The dynamic kinetic resolution of 6‐hydroxypyranones with enals or alkynals through an asymmetric redox esterification is catalyzed by a chiral N‐heterocyclic carbene. The resulting esters are obtained in good to high yields and with high levels of enantio‐ and diastereocontrol. The reaction products are further derivatized to obtain functionalized sugar derivatives and natural products. 相似文献
18.
This work addresses the issue of kinetics of diffusion‐controlled reactions of small radicals with macromolecules in solution. Attack of pulse‐generated hydroxyl radicals on poly(N‐vinylpyrrolidone)—PVP—chains of various molecular weight in water was used as the model reaction. Pulse radiolysis with spectrophotometric detection was applied to determine the rate constants by competition kinetics. The rate constant depends both on polymer concentration and on its molecular weight. In dilute solutions, a distinct dependence of the rate constant on the molecular weight is observed. In the studied range of molecular weight, the values of reaction radius, calculated using Smoluchowski equation on the basis of experimental kinetic data, are very close to the radius of gyration of polymer coils. We believe that radius of gyration, as an easily determined parameter, could possibly serve for predicting rate constants of diffusion‐controlled reactions of polymers with low‐molecular‐weight compounds in dilute solutions. With increasing polymer concentration and thus increasing spatial overlap of polymer coils the dependence of the rate constant on the molecular weight fades away, and the rate constant values increase with increasing concentration toward the value determined for low‐molecular‐weight model of PVP. Most steep increase approximately coincides with the hydrodynamic critical concentration of a given PVP sample, reflecting the change in reaction geometry from individual coils to a continuous matrix of interpenetrating chains. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 474–481, 2011 相似文献
19.
I. O. Opeida Yu. E. Litvinov O. V. Kushch M. O. Kompanets O. M. Shendrik 《国际化学动力学杂志》2013,45(8):515-524
The acenaphthene oxidation with molecular oxygen in the presence of N‐hydroxyphthalimide (NHPI) has been investigated. It is shown that the main oxidation product is acenaphthene hydroperoxide. The phthalimide‐N‐oxyl (PINO) radical has been generated in situ from its hydroxyimide parent, NHPI, by oxidation with iodobenzenediacetate. The rate constant of H‐abstraction (kH) from acenaphthene by PINO has been determined spectroscopically in acetonitrile. The kinetic isotope effect and the activation parameters have also been measured. On the basis of the results of our studies and available published literature data, a plausible mechanism for the oxidation process of acenaphthene with dioxygen catalyzed by NHPI was discussed. 相似文献
20.
The kinetics of oxidation of Isoniazid (INH) by sodium N‐haloarenesulfonamidates, chloramine‐T (CAT), bromamine‐T (BAT), chloramine‐B (CAB), and bromamine‐B (BAB), has been studied in alkaline medium at 303 K. The oxidation reaction follows identical kinetics with a first‐order dependence on each [oxidant] and [INH] and an inverse fractional‐order on [OH−:]. Addition of the reaction product (p‐toluenesulfonamide or benzenesulfonamide) had no significant effect on the reaction rate. Variation of ionic strength and addition of halide ions have no influence on the rate. There is a negative effect of dielectric constant of the solvent. Studies of solvent isotope effects using D2O showed a retardation of rate in the heavier medium. The reaction was studied at different temperatures, and activation parameters have been computed from the Arrhenius and Eyring plots. Isonicotinic acid was identified as the oxidation product by GC‐MS. A two‐pathway mechanism is pro‐posed in which RNHX and the anion RNX− interact with the substrate in the rate‐limiting steps. The mechanism proposed and the derived rate laws are consistent with the observed kinetics. The rate of oxidation of INH increases in the order: BAT > BAB > CAT > CAB. This effect is mainly due to electronic factors. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 221–230, 2000 相似文献