首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm (corresponding to a total path length of approximately 4.9 m) has been used to study the dissociation of methanol between 1591 and 2865 K. Rate constants for two product channels [CH3OH + Kr --> CH3 + OH + Kr (1) and CH3OH + Kr --> 1CH2 + H2O + Kr (2)] were determined. During the course of the study, it was necessary to determine several other rate constants that contributed to the profile fits. These include OH + CH3OH --> products, OH + (CH3)2CO --> CH2COCH3 + H2O, and OH + CH3 --> 1,3CH2 + H2O. The derived expressions, in units of cm(3) molecule(-1) s(-1), are k(1) = 9.33 x 10(-9) exp(-30857 K/T) for 1591-2287 K, k(2) = 3.27 x 10(-10) exp(-25946 K/T) for 1734-2287 K, kOH+CH3OH = 2.96 x 10-16T1.4434 exp(-57 K/T) for 210-1710 K, k(OH+(CH3)(2)CO) = (7.3 +/- 0.7) x 10(-12) for 1178-1299 K and k(OH+CH3) = (1.3 +/- 0.2) x 10(-11) for 1000-1200 K. With these values along with other well-established rate constants, a mechanism was used to obtain profile fits that agreed with experiment to within <+/-10%. The values obtained for reactions 1 and 2 are compared with earlier determinations and also with new theoretical calculations that are presented in the preceding article in this issue. These new calculations are in good agreement with the present data for both (1) and (2) and also for OH + CH3 --> products.  相似文献   

2.
Interaction of the dilacunary polyanion precursor [gamma-GeW(10)O(36)](8-) with Fe(3+) ions in aqueous buffer medium (pH 4.8) results in the formation of two dimeric tungstogermanates depending on the reactant ratios. When using an Fe3+ to [gamma-GeW(10)O(36)](8-) ratio of 1:1, the asymmetric anion [K(H(2)O)(beta-Fe(2)GeW(10)O(37)(OH))(gamma-GeW(10)O(36))](12-) (1) is formed, whereas [{beta-Fe(2)GeW(10)O(37)(OH)2}2]12- (2) is formed when using a ratio of 2:1. Single-crystal X-ray analyses were carried out on Cs(3)K(9)[K(H(2)O)(beta-Fe(2)GeW(10)O(37)(OH))(gamma-GeW(10)O(36))].19H(2)O (CsK-1), which crystallizes in the triclinic system, space group P1, a = 11.4547(2), b = 19.9181(5), c = 21.0781(6) A, alpha = 66.7977(12), beta = 89.1061(12), gamma = 84.4457(11) degrees, and Z = 2 and on Cs(7)K(4)Na[{beta-Fe(2)GeW(10)O(37)(OH)(2)}(2)].39H(2)O (CsKNa-2), which crystallizes in the monoclinic system, space group C2/m, a = 32.7569(13), b = 12.2631(5), c = 14.2895(5) A, beta = 104.135(2) degrees , and Z = 2. Polyanion 1 consists of (beta-Fe(2)GeW(10)O(37)) and (gamma-GeW(10)O(36)) units linked via two Fe-O-W bridges and a central potassium ion. Two equivalent FeO(6) octahedra complete the belt of the beta-Keggin unit and link to the (gamma-GeW(10)O(36)) fragment. On the other hand, 2 consists of two {beta-Fe(2)GeW(10)O(37)(OH)(2)} units with four bridging hydroxo groups linking the four Fe(3+) ions, forming an eight-membered ring. The magnetic properties of CsK-1 and CsKNa-2 have been studied by magnetic susceptibility and magnetization measurements and fitted according to an isotropic exchange model. Both polyanions 1 and 2 exhibit diamagnetic ground states with a small amount of paramagnetic impurity. Electrochemistry studies on 1 and 2 were carried out in a pH 5 acetate medium. The two polyanions have in common the simultaneous reduction of all of their Fe(3+) centers. This observation suggests the existence of identical or almost-identical influences on these centers and their equivalence, especially in the reduced state. Controlled potential coulometry results indicate the presence of two Fe(3+) centers in 1 and four in 2. The splitting of the tungsten wave of 1 compared to the single tungsten wave of 2 is attributed to a difference in acid-base properties of the polyanions. Voltammetric peak-potential shifts as a function of pH were studied in the case of 2.  相似文献   

3.
Smog chamber/Fourier transform infrared (FTIR) techniques were used to measure k(Cl+C(x)F(2x+1)CH(OH)(2)) (x = 1, 3, 4) = (5.84 +/- 0.92) x 10(-13) and k(OH+C(x)F(2x+1)CH(OH)(2)) = (1.22 +/- 0.26) x 10(-13) cm(3) molecule(-1) s(-1) in 700 Torr of N(2) or air at 296 +/- 2 K. The Cl initiated oxidation of CF(3)CH(OH)(2) in 700 Torr of air gave CF(3)COOH in a molar yield of 101 +/- 6%. IR spectra of C(x)F(2x+1)CH(OH)(2) (x = 1, 3, 4) were recorded and are presented. An upper limit of k(CF(3)CHO+H(2)O) < 2 x 10(-23) cm(3) molecule(-1) s(-1) was established for the gas-phase hydration of CF(3)CHO. Bubbling CF(3)CHO/air mixtures through liquid water led to >80% conversion of CF(3)CHO into the hydrate within the approximately 2 s taken for passage through the bubbler. These results suggest that OH radical initiated oxidation of C(x)F(2x+1)CH(OH)(2) hydrates could be a significant source of perfluorinated carboxylic acids in the environment.  相似文献   

4.
Using FTIR smog chamber techniques, k(Cl + CF3OCF2CF2H) = (2.70 +/- 0.52) x 10(-16), k(OH + CF3OCF2CF2H) = (2.26 +/- 0.18) x 10(-15), k(Cl + CF3OC(CF3)2H) = (1.58 +/- 0.27) x 10(-18) and k(OH + CF3OC(CF3)2H) = (3.26 +/- 0.95) x 10(-16) cm3 molecule(-1) s(-1) were measured. The atmospheric lifetimes of CF3OCF2CF2H and CF3OC(CF3)2H are estimated to be 27 and 216 years, respectively. Chlorine atom initiated oxidation of CF3OCF2CF2H in 700 Torr of air in the presence of NO(x) gives CF3OC(O)F in a molar yield of 36 +/- 5% and COF2 in a molar yield of 174 +/- 9%, whereas oxidation of CF3OC(CF3)2H gives CF3OC(O)CF3 and COF2 in molar yields that are indistinguishable from 100%. Quantitative infrared spectra were recorded and used to estimate global warming potentials of 3690 and 8230 (100 year time horizon, relative to CO2) for CF3OCF2CF2H and CF3OC(CF3)2H, respectively. All experiments were performed in 700 Torr of N2/O2 diluent at 296 +/- 2 K. An empirical relationship can be used to estimate the preexponential factor, which can be combined with k(298 K) to give the temperature dependence of reactions of OH radicals with organic compounds proceeding via H-atom abstraction: log(A/n) = (0.239 +/- 0.027) log(k(OH)/n) - (8.69 +/- 0.372), k(OH) is the rate constant at 298 K and n is the number of H atoms. The rates of H-atom abstraction by OH radicals and Cl atoms at 298 K from organic compounds are related by the expression log(k(OH)) = (0.412 +/- 0.049) log(k(Cl)) - (8.16 +/- 0.72). The utility of these expressions and the atmospheric chemistry of the title hydrofluoroethers are discussed.  相似文献   

5.
Rate constants for the reactions of OH radicals and NO3 radicals with O,O-diethyl methylphosphonothioate [(C(2)H(5)O)(2)P(S)CH(3); DEMPT] and O,O,O-triethyl phosphorothioate [(C(2)H(5)O)(3)PS; TEPT] have been measured using relative rate methods at atmospheric pressure of air over the temperature range 296-348 K for the OH radical reactions and at 296 +/- 2 K for the NO(3) radical reactions. At 296 +/- 2 K, the rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were 20.4 +/- 0.8 and 7.92 +/- 0.27 for DEMPT and TEPT, respectively, and those for the NO(3) radical reactions (in units of 10(-15) cm(3) molecule(-1) s(-1)) were 2.01 +/- 0.20 and 1.03 +/- 0.10, respectively. Upper limits to the rate constants for the reactions of O(3) with DEMPT and TEPT of <6 x 10(-20) cm(3) molecule(-1) s(-1) were determined in each case. Rate constants for the OH radical reactions, measured relative to k(OH + alpha-pinene) = 1.21 x 10(-11) e(436/T) cm(3) molecule(-1) s(-1), resulted in the Arrhenius expressions k(OH + DEMPT) = 1.08 x 10(-11) e(871+/-25)/T cm(3) molecule(-1) s(-1) and k(OH + TEPT) = 8.21 x 10(-13) e(1353+/-49)/T cm(3) molecule(-1) s(-1) over the temperature range 296-348 K, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the reference rate constant. Diethyl methylphosphonate was identified and quantified from the OH radical and NO(3) radical reactions with DEMPT, with formation yields of 21 +/- 4%, independent of temperature, from the OH radical reaction and 62 +/- 11% from the NO(3) radical reaction at 296 +/- 2 K. Similarly, triethyl phosphate was identified and quantified from the OH radical and NO(3) radical reactions with TEPT, with formation yields of 56 +/- 9%, independent of temperature, from the OH radical reaction and 78 +/- 15% from the NO(3) radical reaction at 296 +/- 2 K.  相似文献   

6.
The 15-cobalt-substituted polyoxotungstate [Co(6)(H(2)O)(30){Co(9)Cl(2)(OH)(3)(H(2)O)(9)(beta-SiW(8)O(31))(3)}](5-) (1) has been characterized by single-crystal XRD, elemental analysis, IR, electrochemistry, magnetic measurements, and EPR. Single-crystal X-ray analysis was carried out on Na(5)[Co(6)(H(2)O)(30){Co(9)Cl(2)(OH)(3)(H(2)O)(9)(beta-SiW(8)O(31))(3)}].37H(2)O, which crystallizes in the hexagonal system, space group P6(3)/m, with a = 19.8754(17) A, b = 19.8754(17) A, c = 22.344(4) A, alpha= 90 degrees, beta = 90 degrees, gamma = 120 degrees, and Z = 2. The trimeric polyanion 1 has a core of nine Co(II) ions encapsulated by three unprecedented (beta-SiW(8)O(31)) fragments and two Cl(-) ligands. This central assembly {Co(9)Cl(2)(OH)(3)(H(2)O)(9)(beta-SiW(8)O(31))(3)}(17-) is surrounded by six antenna-like Co(II)(H(2)O)(5) groups resulting in the satellite-like structure 1. Synthesis of 1 is accomplished in a simple one-pot procedure by interaction of Co(II) ions with [gamma-SiW(10)O(36)](8-) in aqueous, acidic NaCl medium (pH 5.4). Polyanion 1 was studied by cyclic voltammetry as a function of pH. The current intensity of its Co(II) centers was compared with that of free Co(II) in solution. Our results suggest that 1 keeps its integrity in solution. Magnetic susceptibility results show the presence of both antiferro- and ferromagnetic coupling within the (Co(II))(9) core. A fully anisotropic Ising model has been employed to describe the exchange-coupling and yields g = 2.42 +/- 0.01, J(1) = 17.0 +/- 1.5 cm(-1), and J(2) = -13 +/- 1 cm(-(1). Variable frequency EPR studies reveal an anisotropic Kramer's doublet.  相似文献   

7.
The kinetics and mechanism of oxidation of CF3CHFOCH3 was studied using an 11.5-dm3 environmental reaction chamber. OH radicals were produced by UV photolysis of an O3-H2O-He mixture at an initial pressure of 200 Torr in the chamber. The rate constant of the reaction of CF3CHFOCH3 with OH radicals (k1) was determined to be (1.77 +/- 0.69) x 10(-12) exp[(-720 +/- 110)/T] cm3 molecule(-1)(s-1) by means of a relative rate method at 253-328 K. The mechanism of the reaction was investigated by FT-IR spectroscopy at 298 K. CF3CHFOC(O)H, FC(O)OCH3, and COF2 were determined to be the major products. The branching ratio (k1a/k1b) for the reactions CF3CHFOCH3 + OH --> CF3CHFOCH2* + H2O (k1a) and CF3CHFOCH3 + OH --> CF3CF*OCH3 + H2O (k1b) was estimated to be 4.2:1 at 298 K from the yields of CF3CHFOC(O)H, FC(O)OCH3, and COF2. The rate constants of the reactions of CF3CHFOC(O)H (k2) and FC(O)OCH3 (k3) with OH radicals were determined to be (9.14 +/- 2.78) x 10(-13) exp[(-1190 +/- 90)/T] and (2.10 +/- 0.65) x 10(-13) exp[(-630 +/- 90)/T] cm3 molecule(-1)(s-1), respectively, by means of a relative rate method at 253-328 K. The rate constants at 298 K were as follows: k1 = (1.56 +/- 0.06) x 10-13, k2 = (1.67 +/- 0.05) x 10-14, and k3 = (2.53 +/- 0.07) x 10-14 cm3 molecule(-1)(s-1). The tropospheric lifetimes of CF3CHFOCH3, CF3CHFOC(O)H, and FC(O)OCH3 with respect to reaction with OH radicals were estimated to be 0.29, 3.2, and 1.8 years, respectively.  相似文献   

8.
Glass systems of composition 90R(2)B(4)O(7)+9PbO+1Fe(2)O(3) (R=Li, Na and K) and 90Li(2)B(4)O(7)+(10-x)PbO+xFe(2)O(3) (x=0.5, 1, 3, 4, 5, 7 and 9 mol %) have been investigated by means of electron paramagnetic resonance (EPR) and optical absorption techniques. The EPR spectra exhibit three resonance signals at g approximately 6.0, 4.2 and 2.0. The resonances at g approximately 6.0 and 4.2 are attributed to Fe(3+) ions in rhombic and axial symmetry sites, respectively. The g approximately 2.0 resonance signal is due to two or more Fe(3+) ions coupled together with dipolar interaction. The EPR spectra of 1 mol % of Fe(2)O(3) doped in lithium lead tetraborate glass samples have been studied at different temperatures (123-433 K). The intensity of g approximately 4.2 resonance signal decreases and the intensity of g approximately 2.0 resonance signal increases with the increase of temperature. The line widths are found to be independent of temperature. The EPR spectra exhibit a marked concentration dependence on iron content. A decrease in intensity for the resonance signal at g approximately 4.2 with increase in iron content for more than 4 mol % has been observed in lithium lead tetraborate glass samples and this has been attributed to the formation of Fe(3+) ion clusters in the glass samples. The paramagnetic susceptibility (chi) is calculated from the EPR data at various temperatures and the Curie constant (C) has been evaluated from 1/chi versus T graph. The optical absorption spectrum of Fe(3+) ions in lithium lead tetraborate glasses exhibits three bands characteristic of Fe(3+) ions in an octahedral symmetry. The crystal field parameter D(q) and the Racah interelectronic repulsion parameters B and C have also been evaluated. The value of interelectronic repulsion parameter B (825 cm(-1)) obtained in the present work suggests that the bonding is moderately covalent.  相似文献   

9.
The kinetics of the reaction between aqueous solutions of Na(2)[Fe(CN)(5)NO].2H(2)O (sodium pentacyanonitrosylferrate(ii), nitroprusside, SNP) and MeN(H)OH (N-methylhydroxylamine, MeHA) has been studied by means of UV-vis spectroscopy, using complementary solution techniques: FTIR/ATR, EPR, mass spectrometry and isotopic labeling ((15)NO), in the pH range 7.1-9.3, I = 1 M (NaCl). The main products were N-methyl-N-nitrosohydroxylamine (MeN(NO)OH) and [Fe(CN)(5)H(2)O](3-), characterized as the [Fe(CN)(5)(pyCONH(2))](3-) complex (pyCONH(2) = isonicotinamide). No reaction occurred with Me(2)NOH (N,N-dimethylhydroxylamine, Me(2)HA) as nucleophile. The rate law was: R = k(exp) [Fe(CN)(5)NO(2-)] x [MeN(H)OH] x [OH(-)], with k(exp) = 1.6 +/- 0.2 x 10(5) M(-2) s(-1), at 25.0 degrees C, and DeltaH(#) = 34 +/- 3 kJ mol(-1), DeltaS(#) = -32 +/- 11 J K(-1) mol(-1), at pH 8.0. The proposed mechanism involves the formation of a precursor associative complex between SNP and MeHA, followed by an OH(-)-assisted reversible formation of a deprotonated adduct, [Fe(CN)(5)(N(O)NMeOH)](3-), and rapid dissociation of MeN(NO)OH. In excess SNP, the precursor complex reacts through a competitive one-electron-transfer path, forming the [Fe(CN)(5)NO](3-) ion with slow production of small quantities of N(2)O. The stoichiometry and mechanism of the main adduct-formation path are similar to those previously reported for hydroxylamine (HA) and related nucleophiles. The nitrosated product, MeN(NO)OH, decomposes thermally at physiological temperatures, slowly yielding NO.  相似文献   

10.
Reaction of (C 6H 5)SnCl 3 with Na 10[ A-alpha-GeW 9O 34] in water results in the monomeric, trisubstituted Keggin species [{(C 6H 5)Sn(OH)} 3( A-alpha-GeW 9O 34)] (4-) ( 1), constituting the first organotin derivative of a trilacunary Keggin tungstogermanate. Polyanion 1 could be obtained as two different cesium salts depending on the applied isolation strategy: Cs 3Na[{(C 6H 5)Sn(OH)} 3( A-alpha-GeW 9O 34)].9H 2O ( CsNa-1) and Cs 3[{(C 6H 5)Sn(OH)} 3( A-alpha-HGeW 9O 34)].8H 2O ( Cs-H1). The monomeric phenyltin-containing tungstosilicate [{(C 6H 5)Sn(OH)} 3( A-alpha-SiW 9O 34)] (4-) ( 2) and the dimeric, sandwich-type derivative [{(C 6H 5)Sn(OH)} 3( A-alpha-H 3SiW 9O 34) 2] (8-) ( 3) have also been isolated as the cesium salts Cs 3Na[{(C 6H 5)Sn(OH)} 3( A-alpha-SiW 9O 34)].9H 2O ( CsNa-2), Cs 4[{(C 6H 5)Sn(OH)} 3( A-alpha-SiW 9O 34)].13H 2O ( Cs-2), and Cs 8[{(C 6H 5)Sn(OH)} 3( A-alpha-H 3SiW 9O 34) 2].23H 2O ( Cs-3), respectively. We have investigated in detail the similarities and differences in the reactivity of (C 6H 5)Sn (3+) with [ A-alpha-GeW 9O 34] (10-) vs [ A-alpha-SiW 9O 34] (10-). All five compounds have been characterized in the solid state by means of elemental analysis, infrared spectroscopy, thermogravimetry, and single-crystal X-ray diffraction, representing the first structural analysis for polyanions 1- 3. A full solution characterization of 1 by multinuclear NMR spectroscopy ( (1)H, (13)C, (119)Sn, and (183)W) has also been performed. The monomeric polyanions 1 and 2 are closely associated in the solid state through (Sn)O-H...O t (O t: terminal oxygen atom) hydrogen bonds reinforced by weak C-H...O t contacts to form 2-dimensional ( CsNa-1 and CsNa-2) or 1-dimensional ( Cs-H1) arrangements, and also dimeric entities ( Cs-2) depending on the network of intermolecular interactions.  相似文献   

11.
The ammonium salt of [Fe(4)O(OH)(hpdta)(2)(H(2)O)(4)](-) is soluble and makes a monospecific solution of [Fe(4)(OH)(2)(hpdta)(2)(H(2)O)(4)](0)(aq) in acidic solutions (hpdta = 2-hydroxypropane-1,3-diamino-N,N,N',N'-tetraacetate). This tetramer is a diprotic acid with pK(a)(1) estimated at 5.7 ± 0.2 and pK(a)(2) = 8.8(5) ± 0.2. In the pH region below pK(a)(1), the molecule is stable in solution and (17)O NMR line widths can be interpreted using the Swift-Connick equations to acquire rates of ligand substitution at the four isolated bound water sites. Averaging five measurements at pH < 5, where contribution from the less-reactive conjugate base are minimal, we estimate: k(ex)(298) = 8.1 (±2.6) × 10(5) s(-1), ΔH(++) = 46 (±4.6) kJ mol(-1), ΔS(++) = 22 (±18) J mol(-1) K(-1), and ΔV(++) = +1.85 (±0.2) cm(3) mol(-1) for waters bound to the fully protonated, neutral molecule. Regressing the experimental rate coefficients versus 1/[H(+)] to account for the small pH variation in rate yields a similar value of k(ex)(298) = 8.3 (±0.8) × 10(5) s(-1). These rates are ~10(4) times faster than those of the [Fe(OH(2))(6)](3+) ion (k(ex)(298) = 1.6 × 10(2) s(-1)) but are about an order of magnitude slower than other studied aminocarboxylate complexes, although these complexes have seven-coordinated Fe(III), not six as in the [Fe(4)(OH)(2)(hpdta)(2)(H(2)O)(4)](0)(aq) molecule. As pH approaches pK(a1), the rates decrease and a compensatory relation is evident between the experimental ΔH(++) and ΔS(++) values. Such variation cannot be caused by enthalpy from the deprotonation reaction and is not well understood. A correlation between bond lengths and the logarithm of k(ex)(298) is geochemically important because it could be used to estimate rate coefficients for geochemical materials for which only DFT calculations are possible. This molecule is the only neutral, oxo-bridged Fe(III) multimer for which rate data are available.  相似文献   

12.
The syntheses, crystal structures, and magnetochemical characterization of five new iron clusters [Fe5O2(O2CPh)7(edte)(H2O)] (1), [Fe6O2(O2CBut)8(edteH)2] (2), [Fe12O4(OH)2(O2CMe)6(edte)4(H2O)2](ClO4)4 (3), [Fe12O4(OH)8(edte)4(H2O)2](ClO4)4 (4), and [Fe12O4(OH)8(edte)4(H2O)2](NO3)4 (5) (edteH4= N,N,N',N'-tetrakis(2-hydroxyethyl) ethylenediamine) are reported. The reaction of edteH4 with [Fe3O(O2CPh)6(H2O)3](NO3) and [Fe3O(O2CBut)6(H2O)3](OH) gave 1 and 2, respectively. Complex 3 was obtained from the reaction of edteH4 and NaO2CMe with Fe(ClO4)3, whereas 4 and 5 were obtained from the reaction of edteH4 with Fe(ClO4)3 and Fe(NO3)3, respectively. The core of 1 consists of a [Fe4(mu3-O)2]8+ butterfly unit to which is attached a fifth Fe atom by four bridging O atoms. The core of 2 consists of two triangular [Fe3(mu3-O)]7+ units linked together by six bridging O atoms. Finally, the cores of 3-5 consist of an [Fe12(mu4-O)4(mu-OH)2]26+ unit. Variable-temperature (T) and -field (H) solid-state direct and alternating current magnetization (M) studies were carried out on complexes 1-3 in the 1.8-300 K range. Analysis of the obtained data revealed that 1, 2, and 3-5 possess an S = 5/2, 5, and 0 ground-state spin, respectively. The fitting of the obtained M/N(muB) vs H/T data was carried out by matrix diagonalization, and this gave values for the axial zero-field splitting (ZFS) parameter D of -0.50 cm-1 for 1 and -0.28 cm-1 for 2.  相似文献   

13.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with CF(3)CH(2)C(O)H and CF(3)CH(2)CH(2)OH in 700 Torr of N(2) or air diluent at 296 +/- 2 K. The rate constants determined were k(Cl+CF(3)CH(2)C(O)H) = (1.81 +/- 0.27) x 10(-11), k(OH+CF(3)CH(2)C(O)H) = (2.57 +/- 0.44) x 10(-12), k(Cl+CF(3)CH(2)CH(2)OH) = (1.59 +/- 0.20) x 10(-11), and k(OH+CF(3)CH(2)CH(2)OH) = (6.91 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1). Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the absence of NO show the sole primary product to be CF(3)CH(2)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the presence of NO show the primary products to be CF(3)CH(2)C(O)H (81%), HC(O)OH (10%), and CF(3)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)C(O)H in the absence of NO show the primary products to be CF(3)C(O)H (76%), CF(3)CH(2)C(O)OH (14%), and CF(3)CH(2)C(O)OOH (< or =10%). As part of this work, an upper limit of k(O(3)+CF(3)CH(2)CH(2)OH) < 2 x 10(-21) cm(3) molecule(-1) s(-1) was established. Results are discussed with respect to the atmospheric chemistry of fluorinated alcohols.  相似文献   

14.
The reaction of Fe(III) with Na(+) and K(+) salts of the trivacant [alpha-SiW(9)O(34)](10)(-) ligand have been investigated at pH 6 and pH 1. A new dimer, [(alpha-SiFe(3)W(9)(OH)(3)O(34))(2)(OH)(3)](11-) (1), is synthesized by reacting Na(7)H(3)[alpha-SiW(9)O(34)] or K(10)[alpha-SiW(9)O(34)] with exactly 3 equiv of Fe(III) in a 0.5 M sodium acetate solution (pH 6). The structure of 1, determined by single-crystal X-ray diffraction (a = 22.454(2) A, b = 12.387(2) A, c = 37.421(2), beta = 100.107(8) degrees , monoclinic, C2/c, Z = 4, R(1) = 5.11% based on 12739 independent reflections), consists of two [alpha-SiFe(3)W(9)(OH)(3)O(34)](4-) units linked by three Fe-mu-OH-Fe bonds. Reaction of K(10)[alpha-SiW(9)O(34)] with 3 equiv of Fe(III) in water (pH 1) yields [(alpha-Si(FeOH(2))(2)FeW(9)(OH)(3)O(34))(2)](8)(-2). The structure of 2 was also determined by single-crystal X-ray diffraction (a = 36.903(2) A, b = 13.9868(9) A, c = 21.7839(13) A, beta = 122.709(1) degrees , monoclinic, C2/c, Z = 4, R(1) = 4.57% based on 11787 independent reflections). It consists of two [alpha-Si(FeOH(2))(2)FeW(9)(OH)(3)O(34)](4-) Keggin units linked by a single edge. The terminal ligand on Fe1 in each trisubstituted Keggin unit becomes a mu(2) oxo ligand bridging to a [WO(6)](2-) moiety. The UV-vis spectra of both complexes show the characteristic oxygen-to-metal-charge-transfer bands of polyoxometalates as well as an Fe(III)-centered band at 436 nm (epsilon = 146 M(-1) cm(-1)) and 456 nm (epsilon = 104 M(-1) cm(-1)) for complexes 1 and 2, respectively. Differential scanning calorimetry data show that complex 1 decomposes between 575 and 600 degrees C whereas no decomposition is observed for complex 2 up to temperatures of 600 degrees C.  相似文献   

15.
The photophysical properties of Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF = tetrahydrofuran, PPh(3) = triphenylphosphine, py = pyridine) were explored upon excitation with visible light. Time-resolved absorption shows that all the complexes possess a long-lived transient (3.5-5.0 micros) assigned as an electronic excited state of the molecules, and they exhibit an optical transition at approximately 760 nm whose position is independent of axial ligand. No emission from the Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF, PPh(3), py) systems was detected, but energy transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to the (3)pipi excited state of perylene is observed. Electron transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to 4,4'-dimethyl viologen (MV(2+)) and chloro-p-benzoquinone (Cl-BQ) takes place with quenching rate constants (k(q)) of 8.0 x 10(6) and 1.2 x 10(6) M(-1) s(-1) in methanol, respectively. A k(q) value of 2 x 10(8) M(-1) s(-1) was measured for the quenching of the excited state of Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) by O(2) in methanol. The observations are consistent with the production of an excited state with excited-state energy, E(00), between 1.34 and 1.77 eV.  相似文献   

16.
The kinetics and mechanism of the substitution of coordinated water in nitrilotriacetate complexes of iron(III) (Fe(NTA)(OH(2))(2) and Fe(NTA)(OH(2))(OH)(-)) by phosphate (H(2)PO(4)(-) and HPO(4)(2)(-)) and acetohydroxamic acid (CH(3)C(O)N(OH)H) were investigated. The phosphate reactions were found to be pH dependent in the range of 4-8. Phosphate substitution rates are independent of the degree of phosphate protonation, and pH dependence is due to the difference in reactivity of Fe(NTA)(OH(2))(2) (k = 3.6 x 10(5) M(-)(1) s(-)(1)) and Fe(NTA)(OH(2))(OH)(-) (k = 2.4 x 10(4) M(-)(1) s(-)(1)). Substitution by acetohydroxamic acid is insensitive to pH in the range of 4-5.2, and Fe(NTA)(OH(2))(2) and Fe(NTA)(OH(2))(OH)(-) react at equivalent rates (k = 4.2 x 10(4) and 3.8 x 10(4) M(-)(1) s(-)(1), respectively). Evidence for acid-dependent and acid-independent back-reactions was obtained for both the phosphate and acetohydroxamate complexes. Reactivity patterns were analyzed in the context of NTA labilization of coordinated water, and outer-sphere electrostatic and H-bonding influences were analyzed in the precursor complex (K(os)).  相似文献   

17.
FTIR-smog chamber techniques were used to study the products of the Cl atom and OH radical initiated oxidation of CF3CH=CH2 in 700 Torr of N2/O2, diluent at 296 K. The Cl atom initiated oxidation of CF3CH=CH2 in 700 Torr of air in the absence of NOx gives CF3C(O)CH2Cl and CF3CHO in yields of 70+/-5% and 6.2+/-0.5%, respectively. Reaction with Cl atoms proceeds via addition to the >C=C< double bond (74+/-4% to the terminal and 26+/-4% to the central carbon atom) and leads to the formation of CF3CH(O)CH2Cl and CF3CHClCH2O radicals. Reaction with O2 and decomposition via C-C bond scission are competing loss mechanisms for CF3CH(O)CH2Cl radicals, kO2/kdiss=(3.8+/-1.8)x10(-18) cm3 molecule-1. The atmospheric fate of CF3CHClCH2O radicals is reaction with O2 to give CF3CHClCHO. The OH radical initiated oxidation of CxF2x+1CH=CH2 (x=1 and 4) in 700 Torr of air in the presence of NOx gives CxF2x+1CHO in a yield of 88+/-9%. Reaction with OH radicals proceeds via addition to the >C=C< double bond leading to the formation of CxF2x+1C(O)HCH2OH and CxF2x+1CHOHCH2O radicals. Decomposition via C-C bond scission is the sole fate of CxF2x+1CH(O)CH2OH and CxF2x+1CH(OH)CH2O radicals. As part of this work a rate constant of k(Cl+CF3C(O)CH2Cl)=(5.63+/-0.66)x10(-14) cm3 molecule-1 s-1 was determined. The results are discussed with respect to previous literature data and the possibility that the atmospheric oxidation of CxF2x+1CH=CH2 contributes to the observed burden of perfluorocarboxylic acids, CxF2x+1COOH, in remote locations.  相似文献   

18.
The dimeric, pentacopper(II)-substituted tungstosilicate [Cu(5)(OH)(4)(H(2)O)(2)(A-alpha-SiW(9)O(33))(2)](10)(-) (1) has been characterized by single-crystal X-ray diffraction, elemental analysis, IR, electrochemistry, magnetic measurements, electron paramagnetic resonance (EPR), and mass spectrometry (MS). Magnetization and high-field EPR measurements reveal that the pentameric copper core {Cu(5)(OH)(4)(H(2)O)(2)}(6+) of 1 exhibits strong antiferromagnetic interactions (J(a) = -51 +/- 6 cm(-)(1), J(b) = -104 +/- 1 cm(-)(1), and J(c) = -55 +/- 3 cm(-)(1)) resulting in a spin S(T) = (1)/(2) ground state. EPR data show that the unpaired electron spin density is localized on the spin-frustrated apical Cu(2+) ion with g(zz) = 2.4073 +/- 0.0005, g(yy) = 2.0672 +/- 0.0005, g(xx) = 2.0240 +/- 0.0005, and A(zz) = -340 +/- 20 MHz (-0.0113 cm(-)(1)). 1 can therefore be considered as a model system for a five-spin, electronically coupled, spin-frustrated system. Polyanion 1, which is stable over a wide pH domain (pH 1-7), was characterized by cyclic voltammetry (CV) in a pH 5 medium. Its CV was constituted by an initial two-step reduction of the Cu(2+) centers to Cu(0) through Cu(+), followed at more negative potential by the redox processes of the W centers. Controlled potential coulometry of 1 allows for the reduction of the five Cu(2+) centers, as seen by consumption of 10.05 +/- 0.05 electrons per molecule. Polyanion 1 triggers efficiently the electrocatalytic reduction of nitrate and nitrite, and it also catalyzes the reduction of N(2)O. To our knowledge, this is the first example of N(2)O catalytic reduction by a polyoxoanion. Fourier transform ion cyclotron resonance MS was used to unambiguously assign the molecular weight of the solution-phase species 1 and the oxidation states of the Cu atoms in the central {Cu(5)(OH)(4)(H(2)O)(2)}(6+) core. Infrared (IR) multiphoton dissociation MS/MS of 1 showed evidence of a condensation process similar to bronze formation at low irradiation intensity. Higher IR intensity resulted in the formation of stable fragments consistent with those previously observed in the solution chemistry of polyoxoanions.  相似文献   

19.
Gu ZG  Yang QF  Liu W  Song Y  Li YZ  Zuo JL  You XZ 《Inorganic chemistry》2006,45(22):8895-8901
The reactions of [M(II)(Tpm(Me))(H2O)3]2+ (M = Ni, Co, Fe; Tpm(Me) = tris(3,5-dimethyl-1-pyrazoyl)methane) with [Bu4N][(Tp)Fe(III)(CN)3] (Bu4N+ = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate) in MeCN-Et2O afford three pentanuclear cyano-bridged clusters, [(Tp)3(Tpm(Me))2Fe(III)3M(II)2(CN)9]ClO4.15H2O (M = Ni, 1; M = Co, 2) and [(Tp)3(Tpm(Me))2Fe(III)3Fe(II)2(CN)9]BF4.15H2O (3). Single-crystal X-ray analyses reveal that they show the same trigonal bipyramidal structure featuring a D3h-symmetry core, in which two opposing Tpm(Me)-ligated M(II) ions situated in the two apical positions are linked through cyanide bridges to an equatorial triangle of three Tp-ligated Fe(III) (S = 1/2) centers. Magnetic studies for complex 1 show ferromagnetic coupling giving an S = 7/2 ground state and an appreciable magnetic anisotropy with a negative D(7/2) value equal to -0.79 cm(-1). Complex 2 shows zero-field splitting parameters deducted from the magnetization data with D = -1.33 cm(-1) and g = 2.81. Antiferromagnetic interaction was observed in complex 3.  相似文献   

20.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with ethylene glycol diacetate, CH3C(O)O(CH2)2OC(O)CH3, in 700 Torr of N2/O2 diluent at 296 K. The rate constants measured were k(Cl + CH3C(O)O(CH2)2OC(O)CH3) = (5.7 +/- 1.1) x 10(-12) and k(OH + CH3C(O)O(CH2)2OC(O)CH3) = (2.36 +/- 0.34) x 10(-12) cm3 molecule-1 s-1. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the absence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)CH2OC(O)CH3, CH3C(O)OC(O)H, and CH3C(O)OH. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the presence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)H and CH3C(O)OH. The CH3C(O)OCH2O* radical is formed during the Cl atom initiated oxidation of ethylene glycol diacetate, and two loss mechanisms were identified: reaction with O2 to give CH3C(O)OC(O)H and alpha-ester rearrangement to give CH3C(O)OH and HC(O) radicals. The reaction of CH3C(O)OCH2O2* with NO gives chemically activated CH3C(O)OCH2O* radicals which are more likely to undergo decomposition via the alpha-ester rearrangement than CH3C(O)OCH2O* radicals produced in the peroxy radical self-reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号