首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have synthesized series of comb-like polyimides with mesogenic units in their side groups. Such comb-like polyimides were obtained by polycondensation of aromatic diamines bearing biphenyl-based mesogenic moieties with bicyclo[2,2,2]oct-7-ene 2,3,5,6-tetracarboxylic dianhydride (BCDA). The different diamines, with two lengths of spacer (with 6 and 11 methylene groups), were synthesized in three steps using as mesogenic groups: biphenyl, 4-cyanobiphenyl and 4-(2-methyl-1-butoxy)biphenyl. The synthesis of the polyimides was performed in two steps: polycondensation of a dianhydride with a diamine in N-methyl-2-pyrrolidone at room temperature giving the corresponding polyamic acid, followed by thermal cyclization into the corresponding polyimide. The comb-like polyimides were studied by X-ray diffraction between room temperature and 250°C. Two types of smectic structure were established: SmA1 for the long spacer and SmC1 for the short spacer.  相似文献   

2.
采用高温“一步法”缩聚合成了一系列含叔丁基的可溶性芳香聚酰亚胺树脂, 然后通过溶液浇注法制得相应均质薄膜, 并对其气体分离性能进行了测试, 同时研究了二酐结构和温度对聚酰亚胺均质膜气体分离性能的影响. 结果表明, 对于H2, N2, O2, CO2和CH4 等5种气体, 含叔丁基聚酰亚胺均质膜不仅表现出良好的透气性, 而且具有较高的气体透过选择性, 4,4'-(六氟异丙烯)二酞酸酐(6FDA)和均苯四甲酸二酐(PMDA)两类聚酰亚胺均质膜的气体分离性能最佳. 除CO2外, 这两类聚酰亚胺均质膜的气体渗透系数随温度升高而升高, 而所有测试气体在这两种均质膜中的扩散系数和溶解度系数均随温度升高而增大.  相似文献   

3.
Dianhydrides of alicyclic tetracarboxylic acids were synthesized by chemical modification of tri-cyclodecenetetracarboxylic dianhydride and its chloro-containing derivatives. By polycondensation of these di-anhydrides with diamines polyimides were obtained. Thermal and thermooxidative degradation of these polyimides are discussed. By the interaction of polyamic acid carboxylic groups with diamines in presence of phosphorus pentoxide a number of polyimidoamidines have been synthesized, some physico-chemical properties of them are studied.  相似文献   

4.
New aromatic diamines containing π-conjugated heterocyclic rings were synthesized, which emit blue light in the photoluminescence. Using these new monomers, soluble poly(amic acid)s were prepared by the polycondensations with pyromellitamic dianhydride, and thermally converted to the polyimides in films which emit intense blue-light. These polyimides are considered as potential candidate materials for fabricating optoelectronic devices which emit blue light. In addition, new poly(m-phenylene 4,4′-oxydiphthalimide)s containing various side chains were synthesized. For these polyimides, thermal properties were investigated with considering the chain flexibility of polymer backbone as well as the spacer and biphenyl mesogen end group in the side chains. In particular, these polyimides exhibited excellent performance in the rubbing process and the controlling of both the alignment and the pretilt of liquid-crystal (LC) molecules in the LC cell. This might be attributed mainly to a strong interaction between the biphenyl mesogen end group in the side chains and the mesogen unit of LC molecules.  相似文献   

5.
A series of aliphatic-aromatic polyimides have been synthesized. These polyimides were prepared by high-temperature polycondensation of the aliphatic diamines: 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,9-diaminononane, 1,10-diaminodecane, 1,12-diaminododecane and 4,4-methylenebis(2,6-dimethylaniline) with 1,2,3,4-cyclopentanetetracarboxylic dianhydride. Various ratios of diamines (aromatic:aliphatic) have been applied for preparation of copolyimides. Polycondensation proceeded at 190 °C and produced copolyimides with reduced viscosities up to 0.92 dl/g. The polyimides were soluble in a wide range of organic, common solvents and showed high-thermal stability. In most cases these polymers formed flexible films which presented excellent transparency.  相似文献   

6.
A new six-membered tetracarboxylic dianhydride, 2,5-di(carboxymethyl)terephthalic dianhydride, was synthesized in six steps, starting with pyromellitic dianhydride. The polyimides were prepared from dianhydride and diamines in a two-step procedure. The polyamic acids, which were formed in the first step by the ring-opening polyaddition in DMAc, had inherent viscosities of 0.1–0.7 and were converted to the polyimides by thermal cyclodehydration. These polyimides were insoluble in organic solvents. Thermogravimetric analysis (TGA) in air and nitrogen atmospheres revealed that rapid decomposition began above 400°C for aromatic polyimides.  相似文献   

7.
Novel sul-containing fluorinated polyimides have been synthesized by the reaction of 2,2′-bis-(trifluoromethyl)-4,4′-diaminodiphenyl sulfide (TFDAS) with 1,4-bis-(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA), 2,2′-bis-(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), 4,4′-oxydiphthalicanhydride (ODPA) or 3,4,3′,4′-biphenyl-tetracarboxylic acid dianhydride (s-BPDA). The fluorinated polyimides, prepared by a one-step polycondensation procedure, have good solubility in many solvents, such as N-methyl-2-pyrrolidinone (NMP), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), cyclohexanone, tetrahydrofuran (THF) and m-cresol. The molecular weights (Mn's) and polydispersities (Mn/Mw's) of polyimides were in the range of 1.24 × 105 to 3.21 × 105 and 1.59–2.20, respectively. The polymers exhibit excellent thermal stabilities, with glass-transition temperatures (Tg) at 221–275 °C and the 5% weight-loss temperature are above 531 °C. After crosslinking, these polymers show higher thermal stability. The films of polymers have high optical transparency. The novel sul-containing fluorinated polyimides also have low absorption at both 1310 and 1550 nm wavelength windows. Rib-type optical waveguide device was fabricated using the fluorinated polyimides and the near-field mode pattern of the waveguide was demonstrated.  相似文献   

8.
New aromatic polyimides and polyamide-imides with phenylquinoxaline rings and dimethylsilane units have been synthesized by solution polycondensation reaction of aromatic diamines containing phenylquinoxaline units with bis(3,4-dicarboxyphenyl)-dimethylsilane dianhydride, or with a diacid chloride resulting from the reaction of this dianhydride with p-aminobenzoic acid. These polymers were easily soluble in organic solvents, such as N-methylpyrrolidinone and dimethylacetamide, and showed high thermal stability with decomposition temperature being above 440°C and glass transition temperature in the range of 245-285°C. Very thin coatings were deposited from polymer solutions onto silicon wafers and exhibited smooth, pinhole-free surface in atomic force microscopy investigations. Some of these polymers showed blue fluorescence in solution and films, with a maximum in the range of 415-425 nm.  相似文献   

9.
As majority of polyheteroarylenes based on bis(naphthalic anhydrides), are difficult to process due to their infusiblity and insolubility in common organic solvents and solubility only in strong acids, this study is concerned with the synthesis and properties of new, easily processable polyimides and copolyimides containing naphthalene and oxadiazole rings. These polymers have been synthesized and their properties have been compared with regard to the influence of oxadiazole and naphthalene units on their physical properties. The polyimides were prepared by polycondensation reaction in solution of the aromatic diamines containing preformed oxadiazole ring with two dianhydrides having naphthalene units, at high temperature. Also, copolyimides were prepared by using a mixture of each naphthalene‐containing dianhydride, with hexafluoroisopropylidene‐dianhydride in the polycondensation reaction with the same diamino‐oxadiazoles. Most of the resulting polyimides and copolyimides were soluble in polar amidic solvents and in less polar solvents, and their solutions gave flexible films when spread onto glass plates. The thermal stability and glass transition temperature of these polyimides and copolyimides were measured and compared. The quality and the roughness of the spin‐coated films of these polymers were investigated by atomic force microscopy. The photoluminescence properties of the polymers in solution were studied to determine the color of emission. The UV absorption was also studied to determine the Stokes shift, and hence the possible reabsorption effects. The properties of the present polyimides make them attractive for applications in advanced optoelectronics and other related fields. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Novel polyimides and polyimides having phenoxathiin units have been prepared. Polyamides with inherent viscosities in the range of 0.5–2.9 were readily prepared by the polycondensations of phenoxathiin diamines with aromatic diacyl chlorides and of aromatic diamines with new phenoxathiin diacyl chlorides. The polyimides were synthesized from phenoxathiin diamines and pyromellitic dianhydride by using a two-step procedure. The polyamic acids which formed in the first step had inherent viscosities ranging from 1.0 to 1.6, and they were converted to the polyimides by thermal cyclodehydration. Some of the phenoxanthiin-containing polyamides were highly soluble in polar amide solvents and dimethyl sulfoxide. A series of novel polymers containing phenoxathiin units were much more thermostable than the corresponding polymers having open-chain diphenyl ether linkages.  相似文献   

11.
Organosoluble polyimides were synthesized with the alicyclic dianhydride 1,8‐dimethylbicyclo[2,2,2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride and aromatic diamines. The polyimides possessed good solubility both in strong dipolar solvents and in common solvents; the thermal decomposition temperature of the polyimides exceeded 420 °C. Strong and flexible films of the polyimides, with the cutoff of ultraviolet–visible absorption lower than 310–320 nm, exhibited good features as the alignment layers for nematic liquid crystals with pretilt angles of 1.5–2.9°. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 110–119, 2002  相似文献   

12.
A new aromatic tetracarboxylic dianhydride having a crank and twisted noncoplannar structure, 2,2′-bis(3,4-dicarboxyphenoxy)biphenyl dianhydride, was synthesized by the reaction of 4-nitrophthalonitrile with biphenyl-2,2′-diol, followed by hydrolysis and cyclodehydration. The biphenyl-2,2′-diyl-containing aromatic polyimides having inherent viscosities up to 0.66 dL/g were obtained by the conventional two-step procedure starting from the dianhydride monomer and various aromatic diamines. Most of the polyimides were readily soluble in amide-type solvents such as N,N-dimethylacetamide and N-methyl-2-pyrrolidone. The aromatic polyimides had glass transition temperatures in the range of 205–242°C, and began to lose weight around 415°C, with 10% weight loss being recorded at about 500°C in air. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2021–2027, 1998  相似文献   

13.
A series of aromatic diamines containing pendent methoxy, phenoxy, and biphenoxy moieties were synthesized. By the reaction of diamines with 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), several kinds of polyimides having bulky pendent ether groups were synthesized. Thermal properties and processability such as melt processability and solubility in organic solvents of obtained polyimides were investigated by focusing on the chemical structures of their repeating structure units. It was found that the thermal stability and melt processability of the polyimides did not strongly depend on the existence of bulky pendent phenoxy and biphenoxy moieties. Their solubility in organic solvents, however, was improved by introducing the bulky pendent ether groups such as methoxy, phenoxy, and biphenoxy moieties into their repeating structure units. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 971–978, 1998  相似文献   

14.
Three new hydrazo-bridged diamines, 4,4′-bis [4-(4-aminophenyloxy) phenylhydrazyl] biphenyl (BPD-2), 4,4′-bis [4-(4-aminophenyloxy) phenylhydrazyl] biphenyl ether (SPD-2) and 4,4-bis [4-(4-aminophenyloxy) phenyl] hydrazine (APD-2), were synthesized by the reduction of three azo-diols, 4,4′-bis (4-azo-1-hydroxyphenyl) biphenyl (BPD), 4,4′-bis (4-azo-1-hydroxyphenyl) biphenyl ether (SPD) and azo-4-hydroxybenzene (APD), and polymerized with pyromellitic dianhydride (PM), 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BP) and 3,4,9,10-perylenetetracarboxylic acid dianhydride (PR) either by one-step solution polymerization or by two-step procedure which includes ring-opening polyaddition to give poly(amic acid) followed by cyclic dehydration to polyimide. The monomers and polyimides were characterized by their elemental analyses, FTIR and 1H NMR spectroscopy. Glass transition temperatures of the polymers are quite high (175-310 °C), characteristic of polyimides. The decomposition temperatures for 10% weight loss fall in the range of 280-575 °C in nitrogen. Activation energies of pyrolysis for each of the polymers calculated from Horowitz and Metzger's method are also high (52.54-95.28 kJ mol−1). The inherent viscosities of the polyimides at a concentration of 0.5 g/dl in DMF range from 0.94 to 1.93 dl/g.  相似文献   

15.
A series of sulfonated polyimides with increasing alkyl substituents in the o‐position to diamine were synthesized from 4,4′‐methylene dianiline, 4,4′‐diamine‐3,3′‐dimethyl‐diphenylmethane, and 4,4′‐diamine‐3,5,3′,5′‐tetraethyl‐diphenylmethane using 1,4,5,8‐naphthalenetetracarboxylic dianhydride and perylenetetracarboxylic dianhydride by chemical imidization method. 4,4′‐Diaminobiphenyl 2,2′‐disulfonic acid was used as sulfonated diamine. The variation in the membrane properties with increase in substitution was analyzed. Solubility increased with substitution whereas the thermal stability decreased with increase in substitution. Ion exchange capacity and water uptake reduced with increase in substitution because of the low sulfonic acid content at a particular weight due to the increased molecular weight of the repeating unit. The conductivity of the substituted diamines was higher than the unsubstituted diamines at higher temperature regardless of low ion exchange capacity and water uptake. The increase in conductivity with increase in temperature was more rapid in polyimides than in Nafion®115. Hydrolytic stability of the polyimides with substitution is more than the unsubstituted diamines. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3621–3630, 2004  相似文献   

16.
基团贡献加和法(GAP)假设聚合物性质来自于重复单元中各次级基团的贡献, 因此可以通过计算基团贡献值的加和值预测聚合物性质. van Krevelen建立了基团贡献加和法, 计算了数十种聚合物的性质, 包括常用的溶解度参数、 熔点和玻璃化转变温度(Tg)等参数. 聚酰亚胺是由二酐和二胺缩合反应得到的一类高性能聚合物, 其中Tg是决定聚酰亚胺使用温度范围的关键性质. 因此准确预测聚酰亚胺的Tg有助于优化和筛选单体分子结构. 本文首先利用van Krevelen提供的普适性基团贡献值计算了74种聚酰亚胺的Tg, 发现计算值与实验值具有较好的相关性(R2=0.88, s=21 K), 但存在系统误差, 如二者线性拟合斜率为0.78, 远偏离1. 由于普适性贡献值来自于不同聚合物的数据迭代, 对聚酰亚胺体系适用性较差, 必须对基团贡献值进行校正. 本文系统性地提高了刚性基团的贡献值, 同时降低了柔性基团的贡献值. 利用校正后的基团贡献值重新计算了Tg, 其与实验值具有更好的相关性(R2=0.88, s=18 K)和一致性(线性拟合斜率为0.94). 进一步使用上述校正后的已知基团贡献值对未知的7种二酐基团和6种二酐或二胺中的子基团进行赋值. 训练组(82个聚酰亚胺)和测试组(35个聚酰亚胺)数据验证了这13个基团贡献值的可靠性. 本文建立的基团贡献值校正方法和对未知基团的赋值法也可以推广应用于其它芳杂环类聚合物.  相似文献   

17.
Thianthrene - 2,3,7,8 - tetracarboxylic dianhydride - 5,5,10,10 - tetraoxide (TADATO), a dianhydride having two sulfonyls between two phenyl rings, was synthesized and polymerized with several diamines by a two-step method. Tough polyimide membranes were obtained with flexible diamines but not with rigid diamines. Most of TADATO-based polyimides are soluble in polar solvents such as N,N-dimethylacetamide and N-methyl-2-pyrrolidone. IR study confirmed that almost complete imidization of TADATO-based poly(amic acid) membranes could be achieved by thermal treatment at 100, 200, and 300°C for each 1 h. In a series of polyimides based on 4,4′-oxydianiline, the polyimide from TADATO showed higher gas permeability coefficient of CO2 and higher selectivities of CO2/N2 and CO2/CH4 than those of polyimides from pyromellitic dianhydride and 3,3′,4,4′-biphenyltetracarboxylic dianhydride, and was comparable to that from 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36 : 485–494, 1998  相似文献   

18.
New semirigid thermotropic liquid crystalline (LC) copolyurethanes 4 and 5 made up of biphenyl units and partially fluorinated aliphatic chains in the backbones were synthesized by melt polycondensation of a mixture of a dioxydihexanol of biphenyl 1 and two fluorine-containing diols 2a , b taken in definite feed mole ratios with alkylene diphenyl dicarbamates 3a–i having various lengths of aliphatic chains. The assigned structures of copolyurethanes 4 and 5 were identified by FTIR, 1H- and 13C-NMR spectra, and elemental analyses. The thermal and mesogenic properties were evaluated by differential scanning calorimetry (DSC), thermal mechanical analyses (TMA), polarizing microscopy, and temperature-changeable X-ray analyses, whose measurements indicated that the copolymers 4 and 5 form thermotropic nematic phases and have glass transition steps around room temperature. It is suggested that the incorporation of partially fluorinated aliphatic chains into the backbones has no drastic effect on the LC formation in the semirigid copolyurethanes 4 and 5 . © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1243–1249, 1998  相似文献   

19.
A novel side‐chain liquid‐crystalline polyimide (SLCPI) was prepared via copolycondensation from 3,5‐diamino‐benzonic‐4′‐biphenyl ester, 4,4′‐diamino‐ biphenyl ether, and 3,3′,4,4′‐oxydiphthalic dianhydride. The energy‐minimized structure and liquid crystallinity of SLCPI were investigated by molecular modeling, differential scanning calorimetry (DSC), wide‐angle X‐ray scattering, and polarized optical microscopy, respectively. The results indicated that this polyimide (PI) with side‐chain mesogenic units exhibited a nematic NI phase. Because of the in situ self‐reinforcement of side‐chain mesogenic units, the improved tensile strength and modulus of PI films reached 270% and 300%, respectively. The coefficient of thermal expansion of films decreased by 40%. DSC and thermogravimetric analyses indicated that the phase‐transition temperature of SLCPI was above 240 °C, and the 5% weight‐loss temperature was above 520 °C. Moreover, copolycondensation of two diamines with dianhydride and incorporation of pendent mesogenic units diminished the regularity and symmetry of main chains; as a result, SLCPI exhibits good film processability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 554–559, 2003  相似文献   

20.
New aromatic diamines [(1) and (2)] containing polycycloalkane structures between two benzene rings were synthesized by HCl-catalyzed condensation reaction of aniline hydrochloride and corresponding polycycloalkanone derivatives. The structures of diamines were identified by 1H-NMR, 13C-NMR, FTIR spectroscopy, and elemental analysis. The polyimides were synthesized from the obtained diamines with various aromatic dianhydrides by one-step polymerization in m-cresol. The inherent viscosities of the resulting polyimides were in the range of 0.34–1.02 dL/g. The polyimides showed good thermal stabilities and solubility. All the polymers were readily soluble in N-methyl-2-pyrrolidone, m-cresol, tetrachloroethane, etc. Some of them were soluble even in chloroform at room temperature. The glass transition temperatures were observed in the range of 323–363°C, and all of the polymers were stable up to 400°C under nitrogen atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3449–3454, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号