首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of saliva for measuring xenobiotic concentrations has been practiced for a number of years. While the use of saliva has been generally reserved for the analysis of diagnostic and forensic/toxicology samples, attempts have been made to further enhance the value of saliva as an alternate matrix to those of plasma and serum. It is understood that saliva represents a handy tool for therapeutic drug monitoring (TDM) as it offers certain distinctive advantages. This scope of this review encompasses the following: (a) a comprehensive view of saliva as an alternate matrix for either plasma or serum to understand the pharmacokinetic/pharmacodynamic (PK/PD) characteristics; (b) an account of the factors contributing to the observed variability in salivary monitoring; (c) a tabular compilation of diverse case studies of xenobitoics belonging to different therapeutic classes with emphasis on assay methodology and applicable analytical/biopharmaceutical/pharmacokinetic findings; (d) relevant thoughts on assay procedures as they relate to salivary monitoring; and (e) some representative case studies highlighting the new thinking on the use of saliva outside of traditional TDM. Overall, based on the review, saliva represents a valuable TDM tool for a number of xenobiotics. While parent compound and phase I metabolite(s) for many xenobiotics have been generally quantifiable in saliva, phase II metabolites have not generally been detected in saliva. Therefore saliva samples could also be used to answer some specific PK/PD questions during the drug development process, if applicable. However, the development and validation of the assay in saliva needs to be carried out carefully with particular focus on proper sample collection, processing and storage to ensure the stability of the xenobiotics and with the same rigor as applied to plasma, serum and urine matrices.  相似文献   

2.
3.
4.
Although a finished human genome reference sequence is now available, the ability to sequence large, complex genomes remains critically important for researchers in the biological sciences, and in particular, continued human genomic sequence determination will ultimately help to realize the promise of medical care tailored to an individual's unique genetic identity. Many new technologies are being developed to decrease the costs and to dramatically increase the data acquisition rate of such sequencing projects. These new sequencing approaches include Sanger reaction-based technologies that have electrophoresis as the final separation step as well as those that use completely novel, nonelectrophoretic methods to generate sequence data. In this review, we discuss the various advances in sequencing technologies and evaluate the current limitations of novel methods that currently preclude their complete acceptance in large-scale sequencing projects. Our primary goal is to analyze and predict the continuing role of electrophoresis in large-scale DNA sequencing, both in the near and longer term.  相似文献   

5.
6.
Acrylonitrile is a key industrial compound with numerous uses. Despite its importance, its enthalpy of formation is still contentious. There is a 12 kJ mol−1 range of values reported for the gas phase quantity: 173–185 kJ mol−1. Quantum chemical calculations, using current methodologies and defining reactions, suggest values between 185 and 191 kJ mol−1: the recommended value, an average, is 188 ± 7 kJ mol−1.  相似文献   

7.
8.
The derivation of the Hirshfeld atoms in molecules from information theory is clarified. The importance for chemistry of the concept of atoms in molecules (AIM) is stressed, and it is argued that this concept, while highly useful, constitutes a noumenon in the sense of Kant.  相似文献   

9.
High field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility spectrometry, is emerging as a tool for biomolecular analysis. In this article, the benefits and limitations of FAIMS for protein analysis are discussed. The principles and mechanisms of FAIMS separation of ions are described, and the differences between FAIMS and conventional ion mobility spectrometry are detailed. Protein analysis is considered from both the top-down (intact proteins) and the bottom-up (proteolytic peptides) perspective. The roles of FAIMS in the analysis of complex mixtures of multiple intact proteins and in the analysis of multiple conformers of a single protein are assessed. Similarly, the application of FAIMS in proteomics and targeted analysis of peptides are considered.
Graphical Abstract ?
  相似文献   

10.
The aims, curricula, and types of professional training of analytical chemists in classical universities are considered. Based on the data of a questionnaire filled at by the members of of analytical chemistry departments, an optimum set of special courses was proposed for the specialty analytical chemistry. An alternative set of special courses corresponding to the applied approach to training analytical chemists is sometimes taught to students of new specialties. A compromise between the two approaches is the introduction of additional educational programs.  相似文献   

11.
The objects of nature are structurally generalized, especially the objects undergoing the stage of formation from atoms to macrosized species. No exceptions from a large number of the examined structures of inorganic and organic compounds, algae, plants, viruses, and other objects have been found out. For the majority of substances, the build-up starts from fundamental configurations, then clusters are formed, whereby the structure is assembled. The hierarchical construction is the basic principle irrespective of whether the whole structure is periodic or aperiodic. The spatial domain, in which the substance is formed, is tens to hundreds of nanometers in size, the type of the space geometry being inessential because in the small all the geometries are equivalent.  相似文献   

12.
The formation of adsorption hysteresis in mesoporous material with random pore structure may be interrelated with different distributions of the fluid density attained along different paths of the system preparation. To access microscopic details of these distributions, in addition to the main sorptive liquid, distribution of which along the pore space of Vycor porous glass was of interest, a small amount of a probe liquid with a substantially lower vapor pressure has been added. Molecular diffusivities of both liquids then have been traced using pulsed field gradient NMR. Due to different vapor pressures, the two molecular species explore different spaces occupied by the capillary-condensed (accessible for both species) and gaseous (accessible only for the molecules of the main sorptive) phases. Comparative analysis of the diffusion properties obtained at different states along the adsorption isotherm revealed further insight into peculiarities of the fluid distribution and mass transfer of binary fluids in pores.  相似文献   

13.
During the past two decades, chiral capillary electrophoresis (CE) emerged as a promising, effective and economic approach for the enantioselective determination of drugs and their metabolites in body fluids, tissues and in vitro preparations. This review discusses the principles and important aspects of CE-based chiral bioassays, provides a survey of the assays developed during the past 10 years and presents an overview of the key achievements encountered in that time period. Applications discussed encompass the pharmacokinetics of drug enantiomers in vivo and in vitro, the elucidation of the stereoselectivity of drug metabolism in vivo and in vitro, and bioanalysis of drug enantiomers of toxicological, forensic and doping interest. Chiral CE was extensively employed for research purposes to investigate the stereoselectivity associated with hydroxylation, dealkylation, carboxylation, sulfoxidation, N-oxidation and ketoreduction of drugs and metabolites. Enantioselective CE played a pivotal role in many biomedical studies, thereby providing new insights into the stereoselective metabolism of drugs in different species which might eventually lead to new strategies for optimization of pharmacotherapy in clinical practice.  相似文献   

14.
15.
We report theoretical results about amphiphilic random copolymers in a quasi‐ideal conformation with an overall size very close to that of the analogue homopolymers. We found that a few states may coexist with about the same free energy and a similar radius of gyration, but with different intramolecular conformations. We also argue that, in most cases, amphiphilic copolymers may never achieve the unperturbed Θ state, defined thermodynamically by a vanishing second virial coefficient. Thus, we suggest that such copolymers usually show neither an unperturbed conformation nor an unperturbed state from the thermodynamic viewpoint. We also briefly discuss star homopolymers, which show a depression of the Θ temperature with respect to linear chains and a significant, though finite, Θ swelling, as well as linear chains in the Θ state and in the melt. The main general conclusion is that interactions between chain segments do not cancel each other and are non‐negligible. Accordingly, we suggest that the word "unperturbed" be used only with reference to solution thermodynamics and not for the chain size or conformation.  相似文献   

16.
In the present study, the structure of monophasic ionic magnetic fluids under a static magnetic field is explored. In these aqueous electrostatically stabilized ferrofluids, we vary both the isotropic interparticle interactions and the anisotropic dipolar magnetic interaction by tuning the ionic strength and the size of the nanoparticles. Small angle neutron scattering measurements carried out on nanoparticles dispersed in light water exhibit miscellaneous 2D nuclear patterns under a magnetic field with various q-dependent anisotropies. In this nondeuterated solvent where the magnetic scattering is negligible, this anisotropy originates from an anisotropy of the structure of the dispersions. Both the low q region and the peak of the structure factor can be anisotropic. On the scale of the interparticle distance, the structure is better defined in the direction perpendicular to the field. In the thermodynamic limit (q-->0), the model previously described in ref 10 matches the data without any fitting parameters: the interparticle interaction is more repulsive in the direction parallel to the magnetic field. At low q, the amplitude of the anisotropy of the pattern is governed by the ratio of two interaction parameters: the reduced parameter of the anisotropic magnetic dipolar interaction, gamma/Phi, over the isotropic interaction parameter, , in zero field, which is proportional to the second virial coefficient.  相似文献   

17.
18.
The determination of the pH of a plutonium solution has traditionally depended on an electrode or a titration in the presence of a complexing agent. A new approach uses the equilibrium distribution of the Pu oxidation states to estimate the hydrogen ion concentration. The method is used to estimate the equilibrium constant of the first hydrolysis reaction of tetravalent plutonium.  相似文献   

19.
Classical Frankel's law describes the formation of soap films and their evolution upon pulling, a model situation of film dynamics in foams (formation, rheology, and destabilization). With the purpose of relating film pulling to foam dynamics, we have built a new setup able to give an instantaneous measurement of film thickness, thus allowing us to determine film thickness profile during pulling. We found that only the lower part of the film is of uniform thickness and follows Frankel's law, provided the entrainment velocity is small. We show that this is due to confinement effects: there is not enough surfactant in the bulk to fully cover the newly created surfaces which results in immobile film surfaces. At large velocities, surfaces become mobile and then Frankel's law breaks down, leading to a faster drainage and thus to a nonstationary thickness at the bottom of the film. These findings should help in understanding the large dispersion of previous experimental data reported during the last 40 years and clarifying the pulling phenomenon of thin liquid films.  相似文献   

20.
The bacterial RecA protein has been a model system for understanding how a protein can catalyze homologous genetic recombination. RecA-like proteins have now been characterized from many organisms, from bacteriophage to humans. Some of the RecA-like proteins, including human RAD51, appear to function as helical filaments formed on DNA. However, we currently have high resolution structures of inactive forms of the protein, and low resolution structures of the active complexes formed by RecA-like proteins on DNA in the presence of ATP or ATP analogs. Within a crystal of the E. coli RecA protein, a helical polymer exists, and it has been widely assumed that this polymer is quite similar to the active helical filament formed on DNA. Recent developments have suggested that this may not be the case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号