首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diffusion processes of water molecules into polymer films (PMMA/PS homopolymers and random copolymers) in contact with liquid water were investigated using gravimetric methods and X-ray reflectivity (XRR) analysis. Methods of water contact and XRR measurement were designed for studying the systems in the nonequilibrium state of diffusion. Gravimetric measurements confirmed the Fickian diffusion behavior of films in contact with water. Vertical density distributions in PMMA and methylmethacrylate-rich copolymer films demonstrate the existence of a water-rich layer at the interface. However, with further absorption of water into the film, the overall density increased throughout the film. The results suggest that the diffusion of water into the polymer film occurs to recover density uniformity with a high concentration of water molecules at the surface. Some XRR data for the PS- and styrene-rich copolymer films could not be fit and converted to a vertical density distribution because of their huge diffusion coefficients. However, the reflectivity curves for these films and the vertical density distribution after sufficient water contact suggested that the surfaces of these films were commonly diffused after water contact. Atomic force microscopy (AFM) analysis demonstrated that the surface roughness of these films actually increased with water content.  相似文献   

2.
An atmospheric pressure dielectric barrier plasma discharge has been used to study a thin film deposition process. The DBD device is enclosed in a vacuum chamber and one of the electrodes is a rotating cylinder. Thus, this device is able to simulate continuous processing in arbitrary deposition condition of pressure and atmosphere composition. A deposition process of thin organosilicon films has been studied reproducing a nitrogen atmosphere with small admixtures of hexamethyldisiloxane (HMDSO) vapours. The plasma discharge has been characterized with optical emission spectroscopy and voltage-current measurements. Thin films chemical composition and morphology have been characterized with FTIR spectroscopy, atomic force microscopy (AFM) and contact angle measurements. A strong dependency of deposit character from the HMDSO concentration has been found and then compared with the same dependency of a typical low pressure plasma enhanced chemical vapour deposition process.  相似文献   

3.
郑华靖  蒋亚东  徐建华  杨亚杰 《结构化学》2011,30(11):1523-1532
Adopting LB film method, an arachidic acid (AA)/PEDOT multilayer LB film and polymerized EDOT monomers in hydrophilic group of LB were chosen to prepare the arachidic acid (AA)/PEDOT multilayer LB film. UV-Vis, FT-IR and XPS analyses implied that EDOT was effectively polymerized in film, and thus PEDOT conducting polymer was produced. Analyses of XRR and SIMS indicated that the film had a well-arranged lamella structure, and further research showed that polymerization of EDOT in AA film destroyed the orderliness of the original LB film. This phenomenon could be related to the destructive effect of polymerization on the layered structure. We used four-point probe and semiconductor instrument to study the conductivity property of the film, and observed that the conductivity of AA/PEDOT film had sudden changes with the changes of processing time in an effective conduction network, which was caused by "permeability" in conducting channel of multilayer film. The test results also indicated that the conductivity of AA/PEDOT film was obviously better than that of spin-coating PEDOT/PSS or ODA-SA/PEDOT-PSS film due to the higher π structure of PEDOT structure and ordered film structure.  相似文献   

4.
In this work, aluminium (Alclad 2024‐T3) substrates were cleaned by an r.f. (13.56 MHz) plasma, using argon (Ar), oxygen (O2) and a mixture of O2/Ar (50:50) gases. The effectiveness of plasma cleaning was checked in situ using X‐ray photoelectron spectroscopy (XPS) and ex situ using water contact angle measurements. XPS O/Al surface atomic ratios are in excellent agreement with those of the crystalline boehmite and the pseudoboehmite. Oxygen O 1s peak‐fitting was used to quantify the proportion of hydroxyl ions and the functional composition on the aluminium surface: the surface cleaned with O2 plasma contains 50% of aluminium hydroxides, the ones cleaned with Ar plasma and with Ar/O2 plasma contain, respectively, 25 and 37% hydroxyl ions. The binding energy separation between Al 2p and O 1s is characteristic of AlO(OH). Thin SiOx films were subsequently deposited from a mixture of hexamethyldisiloxane (HMDSO) and oxygen. In the absence of oxygen, a hydrophobic (Θ≥ 100° ) film characteristic of polydimethylsiloxane (PDMS) is formed: polysiloxane‐like thinner films (SiOx) are obtained with the introduction of oxygen. XPS and contact angle measurements confirmed both the composition and the structure of these films. More importantly, contact angle measurements using different liquids and interpreted with the van Oss‐Good‐Chaudhury theory allowed determination of the surface free energy of the deposited films: the calculated values of surface tension of the film formed from HMDSO/O2: (50/50) are in excellent agreement with those of reference silica‐based materials such as a silicon wafer and cleaned glass. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
We describe the formation and characterization of surface-passivating poly(ethylene glycol) (PEG) films on indium tin oxide (ITO) glass substrates. PEG chains with a molecular weight of 2000 and 5000 D were covalently attached to the substrates in a systematic approach using different coupling schemes. The coupling strategies included the direct grafting with PEG-silane, PEG-methacrylate, and PEG-bis(amine), as well as the two-step functionalization with aldehyde-bearing silane films and subsequent coupling with PEG-bis(amine). Elemental analysis by X-ray photoelectron spectroscopy (XPS) confirmed the successful surface modification, and XPS and ellipsometry provided values for film thicknesses. XPS and ellipsometry thickness values were almost identical for PEG-silane films but differed by up to 400% for the other PEG layers, suggesting a homogeneous layer for PEG-silane but an inhomogeneous distribution for other PEG coatings on the molecularly rough ITO substrates. Atomic force microscopy (AFM) and water contact angle goniometry confirmed the different degrees of surface homogeneity of the polymer films, with PEG-silane reducing the AFM rms surface roughness by 50% and the water contact angle hysteresis by 75% compared to uncoated ITO. The ability of the PEG layers to passivate the substrate against the nonspecific adsorption of biopolymers was tested using fluorescence-labeled immunoglobulin G and DNA oligonucleotides in combination with fluorescence microscopy. The results indicate a positive relationship between film density and homogeneity on one hand and the ability to passivate against biopolymer adhesion on the other hand. The most homogeneous layers prepared with PEG-silane reduced the nonspecific adsorption of fluorescence-labeled DNA by a factor of 300 compared to uncoated ITO. In addition, the study finds that the ratio of film thicknesses derived by ellipsometry and XPS is a useful parameter to quantify the structural integrity of PEG layers on molecularly rough ITO surfaces. The findings may be applied to characterize PEG or other polymeric films on similarly coarse substrates.  相似文献   

6.
We describe in situ neutron reflectivity (NR) and RAIRS studies of the chemical modification of films of a polypyrrole-based conducting polymer derived from the pentafluorophenyl ester of poly(pyrrole-N-propanoic acid) (PFP) electrodeposited on electrode surfaces. We explore the role of the solvent in controlling the rate of reaction with solution-based nucleophiles (amines, which react with the ester to form amides). By varying the identity of the solvent (water vs acetonitrile) and the neutron contrast (deuteration), we find that both the identity of the solvent and its population within the film are paramount in determining chemical reactivity and electroactivity. IR signatures allow monitoring of the reaction of solution-based amine-tagged species such as amino-terminated poly(propylene glycol), ferrocene ethylamine, and lysine with film-based ester functionalities: the carbonyl bands show ester/amide interconversion and some hydrolysis to acid. Time-dependent spectral analysis shows marked variations in reaction rate with (i) (co-)polymer composition (replacement of some fluorinated ester-functionalized pyrrole with unfunctionalized pyrrole), (ii) the solvent to which the polymer film is exposed, and (iii) the rate of polymer deposition. NR data provide solvent profiles as a function of distance perpendicular to the interface, the variations of which provide an explanation for film reactivity patterns. Homopolymer films are relatively hydrophobic, thus hindering reaction with species present in water solutions. Incorporating pyrrole groups raises the solvent population-dramatically for water-thereby facilitating entry and reaction of aqueous-based lysine. Changing film deposition rate yields films with different absolute levels of solvent and reactivity patterns that are dependent on the size of the reactant molecules: more rapid deposition of polymer gives films with a more open structure leading to a higher solvent content and thence increased reactivity. These results, supported by XPS and AFM data, allow assembly of composition-structure-reactivity correlations, in which the controlling feature is film solvation.  相似文献   

7.
The swelling behavior of alkanethiol-terminated poly(ethylene glycol) with an average molecular weight of 2180 Da (i.e., approximately 45 ethylene glycol, EG, units) in contact with water was investigated by neutron reflectometry as a function of the morphology of the PEG-SH layer. Amorphous films at a low grafting density show significant swelling with an increase of the film thickness from approximately 25 A in the dry state to approximately 70 A in contact with D2O, which corresponds to a total water uptake of approximately 38 mass %. In contrast, quasi-crystalline monolayers exhibit only a small amount of water penetrating into the film (approximately 8 mass %) with a corresponding change of the layer thickness from approximately 110 to approximately 125 A. The water uptake per EG unit corresponds to the literature value of 1.5 for the amorphous layer and to only 0.25 in the case of the quasi-crystalline film.  相似文献   

8.
A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.  相似文献   

9.
Nickel arachidate (NiA) Langmuir-Blodgett (LB) films have been deposited on hydrophilic Si(0 0 1) substrates by three (up-down-up) and five (up-down-up-down-up) strokes. During deposition, substrates were kept inside the water subphase for different times after each down stroke. Structural information of all the LB films have been obtained from X-ray reflectivity (XRR) studies. One and two symmetric monolayer (SML) was deposited on top of the asymmetric monolayer (AML) in three and five stokes respectively. All the preformed LB films were then used to go through the air-water interface with the same speed that was used at the time of film deposition. Structural information obtained from the XRR studies show that mainly the top layer density decreases after passing through the air-water interface but the layered structure remains the same. Information obtained from both the XRR and atomic force microscopy (AFM) studies suggest that molecules peeled from the top SML layer do not reincorporate with the LB film through tail-tail hydrophobic interaction. Our study shows that NiA LB film has better stability compared with cadmium arachidate LB film inside the water subphase without forming any out-of-plane molecular reorganization.  相似文献   

10.
Patterned poly(N-isopropylacrylamide) (PNIPAAm) brushes were fabricated on oxidized silicon wafers by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide from a micropatterned initiator. The patterned surface initiator was prepared by microcontact-printing octadecyltrichlorosilane and backfilling with 3-(aminopropyl)triethoxysilane followed by amidization with 2-bromo-2-methylpropionic acid. XPS and FTIR confirmed the chemical structure of the surface initiator and the PNIPAAm brushes. Surface analysis techniques, including ellipsometry, contact angle goniometry, and X-ray reflectometry (XRR), were used to characterize the thickness, roughness, hydrophilicity, and density of the polymer brushes. Tapping-mode AFM imaging confirmed the successful patterning of the PNIPAAm brushes on the oxidized silicon substrates. Variable temperature ellipsometry indicated that the lower critical solution temperature of the hydrated PNIPAAm brush was broad, occurring over the range of 20-35 degrees C. A solvatochromic fluorophore, 6-propionyl-2-dimethylaminonaphthalene (Prodan), in the PNIPAAm brush layers yielded a very similar emission to that in DMF, which can be attributed to the similarity of their chemical structures. Fluorescence microscopy further proved the successful patterning of the polymer brushes and suggested that the Prodan is localized in the patterned PNIPAAm brushes and excluded from the surrounding octadecyltrichlorosilane regions.  相似文献   

11.
聚氧化丙烯醚对SiO2减反膜性质的影响   总被引:1,自引:0,他引:1  
采用溶胶-凝胶制备的SiO2减反膜具有优良的光学特性和高损伤阈值,可以用做高反膜和减反膜的低折射率匹配层.在高功率激光领域具有十分诱人的应用前景.  相似文献   

12.
We report the structure, optical properties and surface morphology of Si(100) supported molecular multilayers resulting from a layer-by-layer (LbL) fabrication method utilizing copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), also known as "click" chemistry. Molecular based multilayer films comprised of 5,10,15,20-tetra(4-ethynylphenyl)porphyrinzinc(II) (1) and either 1,3,5-tris(azidomethyl)benzene (2) or 4,4'-diazido-2,2'-stilbenedisulfonic acid disodium salt (3) as a linker layer, displayed linear growth properties up to 19 bilayers. With a high degree of linearity, specular X-ray reflectivity (XRR) measurements yield an average thickness of 1.87 nm/bilayer for multilayers of 1 and 2 and 2.41 nm/bilayer for multilayers of 1 and 3. Surface roughnesses as determined by XRR data fitting were found to increase with the number of layers and generally were around 12% of the film thickness. Tapping mode AFM measurements confirm the continuous nature of the thin films with roughness values slightly larger than those determined from XRR. Spectroscopic ellipsometry measurements utilizing a Cauchy model mirror the XRR data for multilayer growth but with a slightly higher thickness per bilayer. Modeling of the ellipsometric data over the full visible region using an oscillator model produces an absorption profile closely resembling that of a multilayer grown on silica glass. Comparing intramolecular distances from DFT modeling with experimental film thicknesses, the average molecular growth angles were estimated between 40° and 70° with respect to the substrate surface depending on the bonding configuration.  相似文献   

13.
We synthesized various graft copolymer films of poly(ethylene glycol) methacrylate (PEGMA) and methyl methacrylate (MMA) on silicon to examine the dependency of protein-surface interactions on grafting composition. We optimized atom transfer radical polymerizations to achieve film thicknesses from 25 to 100 nm depending on the monomer mole fractions, and analyzed the resulting surfaces by X-ray photoelectron spectroscopy (XPS), ellipsometry, contact angle measurements, and atomic force microscopy (AFM). As determined by XPS, the stoichiometric ratios of copolymer graftings correlated with the concentrations of provided monomer solutions. However, we found an unexpected and pronounced hydrophobic domain on copolymer films with a molar amount of 10-40% PEGMA, as indicated by advancing contact angles of up to 90 degrees . Nevertheless, a breakdown of the protein-repelling character was only observed for a fraction of 15% PEGMA and lower, far in the hydrophobic domain. Investigation of the structural basis of this exceptional wettability by high-resolution AFM demonstrated the independence of this property from morphological features.  相似文献   

14.
Thin films of metal phthalocyanines (MPc) are known to exhibit excellent physical properties but poorly controlled morphologies. Therefore, the present work seeks to understand the film growth mechanism of a model compound for potentially usable MPc, specifically, copper tetra(3-nitro-5-tert-butyl)phthalocyanine (CuPc*). The Langmuir-Schaefer (LS) technique was applied to prepare a series of CuPc* films under different processing conditions. The film growth was examined by Brewster angle microscopy (BAM) on the water surface and small-angle X-ray scattering (SAXS) from the solid films. Neutron reflectometry (NR) measurements of the water uptake into the films and computer simulation of hydrated CuPc* were performed to substantiate an idea of colloidal MPc-water aggregates as nanoscale precursors of smooth solid films. This idea appears fruitful in terms of materials chemistry.  相似文献   

15.
The effect of argon, oxygen, and nitrogen plasma treatment of solvent cast EPDM rubber films has been investigated by means of atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and surface energy measurements. Plasma treatment leads to changes in the surface energy from 25 to 70 mN/m. Treatment conditions influenced both the changes in surface energy and the stability, and it became more difficult to obtain good contact angle measurements after longer (> ca. 4 min) treatment times, probably because of an increasingly uneven surface structure. XPS analyses revealed that up to 20 at. % oxygen can be easily incorporated and that variations of approximately 5% can be controlled by the plasma conditions. Oxygen was mainly found in hydroxyl groups, but also as carbonyl and carboxyl. XPS analyses showed more stable surfaces than expected from contact angles, probably because XPS analysis is less surface sensitive than contact angle measurements. AFM measurements revealed different surface structures with the three gases. The surface roughness increased generally with treatment time, and dramatic changes could be observed at longer times. At short times, surface energy changes were much faster than the changes in surface structure, showing that plasma treatment conditions can be utilized to tailor both surface energies and surface structure of EPDM rubber.  相似文献   

16.
Plasma surface modification is widely used to tailor the surface properties of polymeric materials. Most treatments are performed using low pressure plasma systems, but recently, atmospheric dielectric barrier discharges (DBDs) have appeared as interesting alternatives. Therefore, in this paper, an atmospheric He + CF4 DBD is used to increase the hydrophobicity of a polypropylene (PP) film. The surface characterization of the PP film is performed using contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Results show that the hydrophobic properties of the polymer films are greatly enhanced after plasma treatment as evidenced by an increased contact angle. The incorporation of fluorine on the surface is significant (45 at%), demonstrating the ability of the used DBD set-up to generate fluorine-containing functional groups on the PP surface.  相似文献   

17.
Molecular assemblies (MAs) of oligofurans and oligothiophenes were formed from solutions on various substrates. These films were obtained by alternating deposition of organic chromophores (oligofurans or oligothiophenes) and a palladium salt. These coordination‐based MAs were characterized by UV/Vis spectroscopy, spectroscopic ellipsometry, atomic force microscopy (AFM), X‐ray reflectivity (XRR), X‐ray photoelectron spectroscopy (XPS), and electrochemistry. The MAs exhibit similar electrochemical behavior and their growth and structure are apparently not affected when different organic template layers are used. The density of the MAs is a function of the structure of the molecular component. The oligothiophene density is approximately 50 % higher than that observed for the oligofuran‐based assemblies. The optical and electrochemical properties of the MAs scale linearly with their thickness. The UV/Vis data indicate that upon increasing the film thickness, there is no significant conjugation between the metal‐separated organic chromophores. DFT calculations confirmed that the HOMO–LUMO gap of the surface‐bound oligofuran and oligothiophene metal oligomers do not change significantly upon increasing their chain length. However, electrochemical measurements indicate that the susceptibility of the MAs towards oxidation is dependent on the number of chromophore units.  相似文献   

18.
Molecularly smooth mica has hitherto not been widely used as a substrate for the X-ray reflectometry (XRR) technique. That is largely due to the difficulty of achieving flatness over a sufficiently large area of mica. Here we show that this difficulty can be overcome by slightly bending the mica substrate over an underlying cylinder; the enhanced rigidity of the bent mica sheet along the axis of the cylinder provides sufficient flatness along this axis for XRR measurements. To test this method, we have employed it to characterise three types of nanofilms on mica in air: (A) Cr-Au thin films; (B) a surface-grown zwitterionic polymer brush; and (C) a Langmuir-Blodgett (LB) phospholipid monolayer, using a table-top X-ray reflectometer. Fitting the obtained reflectivity curves with the standard Parratt algorithm allows us to extract the structural information of the nanofilms (both thickness and apparent roughness). Our simple method points to how XRR may be exploited as a useful characterisation tool for nanofilms on mica.  相似文献   

19.
A new method is presented for developing patterned, thin nanocomposite films by introducing cellulose nanowhiskers during the pulsed plasma polymerization of maleic anhydride. Metastable film structures develop as a combination of dewetting and buckling phenomena. By controlling the maleic anhydride monomer to cellulose nanowhisker weight ratio, the whiskers can be incorporated into a homogeneously covering patterned polymer film. Excess nanowhiskers are required to prevent complete dewetting and deposit dimensionally stable films. The formation of anchoring points is assumed to stabilize the film through a "pinning" effect to the substrate. The latter control the in-plane film stresses, similar to the effects of surface inhomogeneities such as artificial scratches. The different morphologies are evaluated by optical microscopy, AFM, contact angle measurements, and ellipsometry. Further analysis by infrared spectroscopy and XPS suggests esterification between the maleic anhydride and cellulose moieties.  相似文献   

20.
Trimethoxy-[11-(2-nitrobenzyloxy)undecyl]silane (1) and trimethoxy-[17-(2-nitrobenzyloxy)heptadecyl]silane (2) have been used for the covalent assembly of siloxane-based photopatternable monolayers. Exposing the monolayers to UV light (312 +/- 10 nm) results in the generation of reactive hydroxyl-terminated monolayers without affecting the film quality. The new monolayers, deprotection chemistry, and the effect of photoinduced headgroup lift-off on the monolayer microstructure have been studied in detail by a full complement of physicochemical techniques, including optical (UV-vis) spectroscopy, ellipsometry, aqueous contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), synchrotron X-ray reflectivity (XRR), and atomic force microscopy (AFM and AFM-force spectroscopy). AFM-force spectroscopy was used to analyze hydrogen-bond interactions as a function of the nature of the solid-liquid interface. AFM-force spectroscopy indicates a hydrogen-bond energy for photodeprotected monolayers of 8.2 kJ mol(-1) (approximately 2 kcal mol(-1)). Scanning electron microscopy (SEM) revealed that treatment of photopatterned monolayers with ZnEt2 solutions resulted in well-defined approximately 2 microm x 2 microm features of 10 A thick ZnO layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号