首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 781 毫秒
1.
应用丝网印刷和共烧结制备LaNi0.6Fe0.4O3-δ(LNF)-Gd0.2Ce0.8O2(GDC)梯度复合阴极/Gd0.2Ce0.8O2/Sc0.1Zr0.9O1.95(ScSZ)/Gd0.2Ce0.8O2/LaNi0.6Fe0.4O3-δ(LNF)-Gd0.2Ce0.8O2(GDC),组成梯度复合阴极对称电池.实验表明,在750 oC工作温度下单层70%LNF-30%GDC(文中均指质量百分比)复合阴极的极化电阻为0.581Ω·cm2,而三层60%LNF-40%GDC/70%LNF-30%GDC/100%LNF复合阴极的极化电阻最小(0.452Ω·cm2).由于阴极组成在ScSZ电解质和LNF阴极之间呈梯度变化,因此获得了最佳的阴极/电解质界面,大大加快了三相界面或气体/阴极/电解质三相接触点反应区的扩散,其电荷传递电阻Rct和浓差极化电阻Rd均减小,因而具有最低的阴极极化电阻值.  相似文献   

2.
采用共压-共烧结的方法制备以NiO-La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Sm0.2O2-δ复合阳极为支撑,以Ce0.8Gd0.2O2-δ(GDC)为电解质,以La0.8Sr0.2Co0.8Fe0.2O3-δ (LSCF)-Ce0.8Gd0.2O2-δ(GDC)为复合阴极的单电池,在 400~650 ℃范围内,以干甲烷为燃料气,氧气为氧化气,测试了单电池的性能.用SEM对单电池进行微观结构分析,并对电池在650 ℃进行了6 h的稳定性测试,结果表明,该电池在6 h的测试过程中功率有较大的衰减,单电池在650 ℃时得到电流密度和功率流密度分别为为258.26 mA/cm2,为51.31 mW/cm2.  相似文献   

3.
制备了一种高电化学性能的抗CO2中毒的低温质子导体固体氧化物燃料电池电解质BaZr0.4Ce0.4Y0.2O3(BZCY4),并通过双层共压法制备出NiO+BZCY4阳极支撑的单电池.该电池以质子导体材料BZCY4氧化物为电解质,钙钛矿型材料Ba0.5Sr0.5Co0.8Fe0.2O3(BSCF)为阴极,在750和400℃下的功率密度分别为219和57mW/cm2.  相似文献   

4.
高性能镓酸镧基电解质燃料电池   总被引:8,自引:0,他引:8  
制备并用多种电化学方法研究了LaGaO3基高性能中温固体氧化物燃料电池的电极和电解质材料,组装出了高性能单电池.实验发现, Co掺杂的La0.8Sr0.2Ga0.8Mg0.2O3电解质中, Co含量的增加显著提高了电解质的氧离子电导率,电解质的氧迁移数略有减小,是非常好的中、低温燃料电池电解质.钴掺杂的电解质不仅显著减小了电池的欧姆电阻,而且减小了电池的阴、阳极极化过电位.以La0.8Sr0.2Ga0.8Mg0.11Co0.09O3为电解质时电池在1073、973、873 K下的最大输出功率密度分别达到1.77、0.92、0.41 W•cm-2,是非常有前景的电池体系.  相似文献   

5.
应用丝网印刷和共烧结制备LaNi0.6Fe0.4O3-δ/Sc0.1Zr0.9O1.95/LaNi0.6Fe0.4O3-δ对称电池.以硝酸铈和硝酸钆为原料,柠檬酸作燃料,燃烧合成Gd0.2Ce0.8O2(GDC)包覆的LaNi0.6Fe0.4O3-δ(LNF)阴极.实验表明,在750oC工作温度下,纯LaNi0.6Fe0.4O3-δ阴极的极化电阻为0.70Ω.cm2,而21.3%(by mass,下同,如无特殊标注均为质量分数)GDC包覆的LNF-GDC复合阴极的极化电阻最小(0.13Ω.cm2),活化能最低(136.80 kJ.mol-1),故其阴极性能最佳.GDC的包覆加速了气体/阴极/电解质三相界面反应区的扩散过程,降低了阴极极化电阻.  相似文献   

6.
中温平板型固体氧化物燃料电池研究   总被引:1,自引:0,他引:1  
采用流延法制备Ni/YSZ阳极支撑体 YSZ电解质复合膜素坯.经等静压,共烧结而得到的复合膜,其YSZ电解质层的厚度在1530μm之间,面积大于100cm2.再将由柠檬酸盐法合成的Ce0.8Sm0.2O1.9(CSO)和固相法合成的La0.6Sr0.4CoO3(LSCO)相继沉积到YSZ膜上形成有CSO中间层的复合阴极,从而构成Ni/YSZ/CSO/LSCO的中温平板型固体氧化物燃料(单体)电池,其中Ni/YSZ为阳极,CSO是中间层,LSCO为阴极.以H2作燃料气,O2为氧化气,850℃下,该单电池开路电压达1.1V,最大输出功率密度0.2W/cm2.本文还对该单电池复数阻抗谱进行了分析讨论.  相似文献   

7.
中温复合固体电解质SDC-LSGM的制备和性能   总被引:2,自引:1,他引:1  
采用甘氨酸-硝酸盐法分别制备了Ce0.85Sm0.15O2-δ(SDC)与La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)两种电解质材料, 并用固相混合法将两种材料按不同质量比(SDC与LSGM的质量比分别为9∶1, 8∶2, 5∶5)混合制备复合电解质材料. 采用交流阻抗技术对样品的电学性能进行研究. 实验结果表明, SDC与LSGM的质量比为9∶1(SL91)时, 样品具有较高的电导率, 在350—800 ℃温度范围内其电导率均比SDC的高. 以复合电解质为支撑体, 以Sm0.5Sr0.5CoO3 为阴极、NiO/SDC 为阳极制成单电池, 测试结果显示, 在800 ℃时以SL91为电解质的单电池的最大输出功率密度为0.25 W/cm2, 最大电流密度为1.06 A/cm2. 在电池的工作温度区间(600—800 ℃)内以复合材料为电解质的单电池的开路电压比以SDC为电解质的高.  相似文献   

8.
采用共压-共烧结的方法制备了以NiO-La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Sm0.2O2-δ复合阳极为支撑、以Ce0.8Gd0.2O2-δ(GDC)为电解质、以La0.8Sr0.2Co0.8Fe0.2O3-δ(LSCF)-Ce0.8Gd0.2O2-δ(GDC)为复合阴极的单电池,在400~700 ℃范围内,以加湿天然气(3%H2O)为燃料气,氧气为氧化气,测试了电池的放电性能.利用XRD、SEM、EDX等手段对复合阳极进行结构、化学相容性、微观型貌和碳元素分析.分析结果表明,符合阳极具有较好的化学相容性,且阳极和阴极具有较好的孔隙、孔道结构.EDX测试结果表明有少量的碳沉积.在600℃进行了电池的稳定性测试.测试结果表明,该电池在13 h的测试过程中功率无明显衰减,具有较好的稳定性.复合阳极单电池在600℃得到最大电流密度,为215.49 mA·cm-2;最大功率流密度为44.85 mW·cm-2.  相似文献   

9.
低共熔混合锂盐相图的绘制及应用   总被引:3,自引:0,他引:3  
采用热分析法对不同组成的混合锂盐二元体系进行研究, 绘制了混合锂盐体系的步冷曲线和T-x相图, 结果表明体系均为具有最低共熔点的二元体系. LiOH-LiNO3、LiOH-LiCl、LiOH-Li2CO3及LiNO3-LiCl体系的最低共熔点分别为175.7、294.5、418.2及221.6 ℃. 利用低共熔混合物LiNO3-LiOH为锂盐与不同前驱体反应, 制备出了层状结构良好的锂离子电池正极材料LiNiO2、LiNi0.8Co0.2O2及LiNi1/3Co1/3Mn1/3O2. X射线衍射分析表明, 合成的材料具有规整的层状NaFeO2结构, 且XRD衍射峰强度之比I(003)/I(104)>2.0, 电性能测试表明, 在2.7-4.3 V(vs Li/Li+)的电压范围内进行0.1C倍率充放电, LiNiO2、LiNi0.8Co0.2O2、LiNi1/3Co1/3Mn1/3O2首次充电比容量分别达168.0、225.4、194.0 mAh·g-1, 放电比容量分别为138.4、165.8、157.7 mAh·g-1.  相似文献   

10.
BaCe0.8Y0.2O3-α固体电解质的离子导电性及其燃料电池性能   总被引:1,自引:0,他引:1  
用高温固相反应合成了BaCe08Y02O3-α固体电解质,用氢浓差电池和氧浓差电池方法研究了它的离子导电特性.以该氧化物为固体电解质,多孔性Pt为电极材料,组成氢-空气燃料电池,测定了该燃料电池的电流-电压特性.研究发现,BaCe0.8Y0.2O3-α在氢气中几乎是一个纯的质子导体,在氧气中是一个氧离子和电子空穴的混合导体,其燃料电池的开路电压(OCV)接近于理论值,最大输出电流密度约为820mA@cm-2(1000℃),最大输出功率密度约为200mW@cm-2(1000℃),放电性能稳定,具有良好的电池性能.  相似文献   

11.
郝红霞  刘瑞泉 《无机化学学报》2009,25(10):1842-1847
采用溶胶-凝胶法合成了新型中温固体氧化物燃料电池(IT-SOFC)阳极材料Ce1-xErxOy(x=0.00,0.10,0.15,0.20,0.25,0.30)(EDC),并采用共压-共烧结法制备了以NiO-EDC复合阳极为支撑、以Ce0.8Gd0.2O2-δ(GDC)为电解质、以La0.8Sr0.2Co0.8Fe0.2O3-δ(LSCF)-GDC为复合阴极的单电池。利用XRD和SEM等方法对阳极材料EDC进行了晶相结构、微观形貌和化学相容性等分析。在400~700 ℃范围内,以加湿天然气(3% H2O)为燃料气,氧气为氧化气测试了电池的电化学性能。结果表明:EDC阳极材料具有良好的孔道结构;11种不同阳极组成的单电池中50%(质量分数)NiO-50%(质量分数)Ce0.85Er0.15Oy(E15C85)阳极支撑的单电池具有最佳的电化学性能,在650 ℃时其最大电流密度为117.84 mA·cm-2和最大比功率为24.37 mW·cm-2。  相似文献   

12.
Cu-CeO_2基阳极直接甲烷SOFC的制备及其性能   总被引:1,自引:0,他引:1  
采用干压法制备了NiO-YSZ(氧化钇稳定氧化锆)/(ZrO2)0.89(Sc2O3)0.1(CeO2)0.01(10ScSZ-1CeO2)半电池,经还原-酸溶法除去NiO制备了多孔YSZ负载致密10ScSZ-1CeO2双层结构,通过浸渍法在多孔YSZ阳极基体中引入Ce、Cu的硝酸盐制备Cu-CeO2-YSZ复合阳极,结合La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极构建了Cu-CeO2-YSZ/10ScSZ-1CeO2/LSCF单元电池.通过X射线衍射(XRD)和场发射扫描电镜(FESEM)等手段对电池单元的物相、微观结构进行表征.结果表明:还原-酸溶法制备的YSZ/10ScSZ-1CeO2双层结构的YSZ基体具有孔隙率高(64%)、孔洞连通性好的微观结构,有助于采用浸渍法引入Ce、Cu硝酸盐;10ScSZ-1CeO2电解质薄膜致密无缺陷,厚约30μm.电性能测试表明所构建单元固体氧化物燃料电池(SOFC)具有良好的电性能输出,在650℃以湿H2和CH4为燃料时的最大功率密度分别为0.29和0.09W·cm-2;在700℃以湿H2和CH4为燃料时的最大功率密度分别达到0.48和0.21W·cm-2.优良的电性能主要归功于小的电解质内阻和阴极极化电阻以及良好的阳极微观结构.  相似文献   

13.
BaCe_(0.8)Y_(0.2)O_(3-α)的溶胶-凝胶法合成及其电性能   总被引:3,自引:0,他引:3  
贾定先  马桂林  石慧 《化学学报》2002,60(10):1737-1741
用溶胶-凝胶法合成了BaCe_(0.8)Y_(0.2)O_(3-α)固体电解质前驱体,并以低 于通常固相反应150~250 ℃的温度(即1400~1500 ℃)进行了烧结。以烧结体样 品为固体电解质、多孔性铂为电极,组成氢及氧浓差电池、氢-空气燃料电池,测 定了BaCe_(0.8)Y_(0.2)O_(3-α)烧结体的质子和氧离子迁移数以及燃料电池的性 能,并与高温固相反应法合成的样品进行了比较。结果表明,烧结温度能显著影响 溶胶-凝胶法合成样品的质子迁移数及燃料电池性能。烧结温度≥ 1450 ℃时,质 子迁移数近似为1,燃料电池性能亦较高,烧结温度< 1450 ℃时,质子迁移数< 1 ,燃料电池性能亦较低。在1400~1500 ℃烧结的样品中,1450 ℃下烧结的样品具 有最高的电池性能,接近于高温固相反应法合成的样品。  相似文献   

14.
Preparation conditions to obtain a dense electrolyte layer on a micro-tubular electrode support were investigated using wet coating and subsequent co-firing techniques. An anode-supported micro-tubular SOFC with 1.5 mm diameter was successfully fabricated by careful control of the co-sintering process of electrolyte/anode support laminates. The densification of the electrolyte layer deposited on the support surface was greatly affected by the shrinkage of tubular support during the co-sintering process. Support shrinkage above 15% was found to produce a fully densified electrolyte layer on the anode support. In contrast, the use of an anode support with shrinkage below 10% constrained gadolinium-doped ceria (GDC) sintering, resulting in a poorly densified GDC microstructure. Finally, we obtained a micro-tubular cell composed of a dense GDC and a porous (La,Sr)(Co,Fe)O3–GDC multi-layered structure on a NiO–GDC micro-tubular anode support. The cell, with a dense and ≈15 μm thick GDC electrolyte layer, was electrochemically evaluated in a temperature range from 450 to 550 °C. This micro-tubular cell with an electrode length of 6.3 mm showed a power density above 0.1, 0.2 and 0.4 W/cm2 at 450, 500 and 550 °C, respectively, in wet H2 fuel flow.  相似文献   

15.
采用固相反应法合成A缺位的(La0.8Sr0.2)0.95MnO3(LSM95)作为阴极材料,Zr0.9Sc0.1SO1.95(SSZ)商业粉体作为电解质材料,溶胶-凝胶法合成的La0.8Sr0.2Cr0.5Mn0.5O3-(LSCrM)作为阳极电催化材料,利用流延、共烧结及浸渍法得到结构为LSCrM-CeO2|SSZ|3YSZ-LSM95的阴极支撑型固体氧化物燃料电池,分别在氢气气氛和甲烷气氛中进行电化学性能测试. 结果表明,浸渍0.11 g·cm -2 CeO2的LSCrM-CeO2|SSZ|3YSZ-LSM95单电池在以CH4为燃料时,600、650、700、750和800 oC下的功率密度分别为1.68、4.70、12.40、28.08和54.78 mW·cm -2,表现出一定的电化学性能和较好的稳定性.  相似文献   

16.
采用硝酸盐-柠檬酸法合成了具有高比表面积的一系列Ni-Fe氧化物和电解质Ce0.8Sm0.2O1.9(SDC), 利用上述材料制备出固体氧化物燃料电池(SOFC)复合阳极材料Ni-Fe/SDC, 并对其微结构和相关性能进行测试. 结果表明: 该复合阳极材料与电解质SDC具有较高的热匹配性, 以其作为SOFC的阳极, 氢气为燃料, 其单电池表现出优异的性能, 700 ℃电池输出功率密度最高可达90.6 mW•cm−2.  相似文献   

17.
Effects of a sintering agent for La-doped ceria (LDC) as a buffer layer to prevent a chemical reaction between Ni in anode and Sr- and Mg-doped lanthanum gallate (LSGM) electrolyte during sintering were studied for improving sintering and electrical properties. Electrochemical performance of anode-supported solid oxide fuel cells (SOFCs) using LDC and LSGM films prepared by screen printing and co-sintering (1,350 °C) was also investigated. The prepared cell with dense LDC (ca. 17 μm) and LSGM electrolyte (ca. 60 μm) films showed an open circuit voltage close to the theoretical value of 1.10 V and a high maximum power density (0.831 W cm–2) at 700 °C. The addition of 1 wt.% LSGM to porous LDC buffer layer was effective for improving the sintering density and electrical conductivity, resulting in the high power density due to the decreased internal resistance loss.  相似文献   

18.
An intriguing cell concept by applying proton-conducting oxide as the ionic conducting phase in the anode and taking advantage of beneficial interfacial reaction between anode and electrolyte is proposed to successfully achieve both high open circuit voltage (OCV) and power output for SOFCs with thin-film samarium doped ceria (SDC) electrolyte at temperatures higher than 600 °C. The fuel cells were fabricated by conventional route without introducing an additional processing step. A very thin and dense interfacial layer (2-3 μm) with compositional gradient was created by in situ reaction between anode and electrolyte although the anode substrate had high surface roughness (>5 μm), which is, however, beneficial for increasing triple phase boundaries where electrode reactions happen. A fuel cell with Ni-BaZr(0.4)Ce(0.4)Y(0.2)O(3) anode, thin-film SDC electrolyte and Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF) cathode has an OCV as high as 1.022 V and delivered a power density of 462 mW cm(-2) at 0.7 V at 600 °C. It greatly promises an intriguing fuel cell concept for efficient power generation.  相似文献   

19.
(La0.8Sr0.2)0.95MnO3?δ (LSM)–Gd0.1Ce0.9O2?δ (gadolinium-doped ceria, GDC) composite cathode material was developed and characterized in terms of chemical stability, sintering behaviour, electrical conductivity, mechanical strength and microstructures to assess its feasibility as cathode support applications in cathode-supported fuel cell configurations. The sintering inhibition effect of LSM, in the presence of GDC, was observed and clearly demonstrated. The mechanical characterization of developed composites revealed that fracture behaviour is directly affected by pore size distribution. The Weibull strength distribution showed that for bimodal pore size distribution, two different fracture rates were present. Furthermore, the contiguity of LSM and GDC grains was calculated with image analysis, and correlation of microstructural features with mechanical and electrical properties was established. Subsequently, an LSM/GDC-based cathode-supported direct carbon fuel cell (DCFC) with Ni/ScSZ (scandia-stabilised zirconia) anode was successfully fabricated via slurry coating and co-firing techniques. The microstructures of electrodes and electrolyte layers were observed to confirm the desired morphology after co-sintering, and a single cell was electrochemically characterized in solid oxide fuel cell (SOFC) and DCFC mode with ambient air as oxidant. The higher values of open-circuit voltage indicated that the electrolyte layer prepared by vacuum slurry coating is dense enough. The corresponding peak power densities at 850 °C were 450 and 225 mW cm?2 in SOFC and DCFC mode, respectively. Electrochemical impedance spectroscopy was carried out to observe electrode polarization and ohmic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号