首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new modeling strategy is developed to introduce tabulated chemistry methods in the LES of turbulent premixed combustion. The objective is to recover the correct laminar flame propagation speed of the filtered flame front when the subgrid scale turbulence vanishes. The filtered flame structure is mapped by 1D filtered laminar premixed flames. Closure of the filtered progress variable and the energy balance equations are carefully addressed. The methodology is applied to 1D and 2D filtered laminar flames. These computations show the capability of the model to recover the laminar flame speed and the correct chemical structure when the flame wrinkling is completely resolved. The model is then extended to turbulent combustion regimes by introducing subgrid scale wrinkling effects on the flame front propagation. Finally, the LES of a 3D turbulent premixed flame is performed. To cite this article: R. Vicquelin et al., C. R. Mecanique 337 (2009).  相似文献   

2.
The paper reviews the practical problems in measuring a turbulent burning velocity that gives the mass rate of burning. These largely centre on identifying an appropriate flame surface to associate with the turbulent burning velocity, u t , and the density of the unburned mixture. Such a flame surface has been identified, in terms of the mean reaction progress variable, $\bar {c}$ , for explosive flame propagation in a fan-stirred bomb. Measurement of $\bar {c}$ makes possible an estimation of the flame surface density, ??, from the relationship ${\it \Sigma} =k\bar {c}\left( {1-\bar {c}} \right)$ . It is shown that in such explosions, mass rates of burning derived from the measured total flame surface area agreed well with those found from the measured turbulent burning velocity. Flamelet considerations identify appropriate dimensionless correlating parameters for u t . As a result, correlations of turbulent burning velocity divided by the effective rms turbulent velocity, are plotted against the turbulent Karlovitz stretch factor, K, for different values of the Markstein number for flame strain rate, Masr. These plots cover a wide range of variables, including pressure and fuels, and are indicative of different regimes of turbulent combustion. At the lower values of K, there is some evidence of increases in u t and k due to high-frequency flame surface wrinkling arising from flame instabilities. These increase as Masr becomes more negative. It is found from the developed value of the mean flame surface density throughout the flame brush that, to a first approximation, an increase in u t for a given mixture is accompanied by a proportional increase in the volume of the brush. The analysis shows that the volume fraction of the turbulent flame brush that is reacting is quite small.  相似文献   

3.
4.
为避免密闭空间内可燃预混气体爆炸事故造成的伤害,对其进行较为准确的爆炸超压预测是抗爆设计和日常安全管理的关键。结合已有文献实验数据,利用光滑层流火焰传播理论模型建立了爆炸超压模型;对比发现,当体积较大时,光滑层流火焰传播理论模型存在较大的误差。较大体积密闭空间爆炸火焰传播过程中的不稳定性造成火焰前锋面褶皱并引起湍流燃烧,导致火焰前锋面表面积大幅增加,且在火焰传播过程中表现出自相似分形特征。依据褶皱及湍流火焰传播过程中的自相似分形特征,基于分形燃烧理论和相关经验数据,进一步建立了考虑可燃预混气体爆炸火焰褶皱及湍流火焰传播的爆炸超压预测模型,并与实验所得结果进行了对比。结果表明:当密闭空间体积较大时,利用褶皱及湍流火焰传播理论建立的爆炸超压模型进行峰值压力估算时,两种工况下实验所得和理论计算所得相对误差分别为10.4%和11.1%,较光滑层流火焰传播理论爆炸超压模型相比,误差分别减少了72.3%和50.6%。本文所建立理论模型与实验所得结果具有较好的一致性,在一定程度上可满足结构抗爆设计或日常安全管理的需要。  相似文献   

5.
A sub-grid scale (SGS) combustion model by combining dynamic thickened flame (DTF) with flamelet generated manifolds (FGM) tabulation approach (i.e. DTF-FGM) is developed for investigating turbulent premixed combustion. In contrast to the thickened flame model, the dynamic thickening factor of the DTF model is determined from the flame sensor, which is obtained from the normalized gradient of the reaction progress variable from the one-dimensional freely propagating premixed flame simulations. Therewith the DTF model can ensure that the thickening of the flame is limited to the regions where it is numerically necessary. To describe the thermo-chemistry states, large eddy simulation (LES) transport equations for two characteristic scalars (the mixture fraction and the reaction progress variable) and relevant sub-grid variances in the DTF-FGM model are presented. As to the evaluation of different SGS combustion models, another model by utilizing the combination of presumed probability density function (PPDF) and FGM (i.e. PPDF-FGM) is also described. LES of two cases with or without swirl in premixed regime of the Cambridge swirl burner flames are performed to evaluate the developed SGS combustion model. The predicted results are compared with the experimental data in terms of the influence of different LES grids, model sensitivities to the thickening factor, the wrinkling factor, and the PPDF of characteristic scalars, the evaluation of different modelling approaches for the sub-grid variances of characteristic scalars, and the predictive capability of different SGS combustion models. It is shown that the LES results with the DTF-FGM model are in reasonable agreement with the experimental data, and better than the results with the PPDF-FGM approach due to its ability to predict better in regions where flame is not resolved.  相似文献   

6.
Characteristics of supersonic mixing and combustion with hydrogen injection upstream of a cavity flameholder are investigated numerically using hybrid RANS/LES (Reynolds-Averaged Navier–Stokes/Large-Eddy Simulation) method. Two types of inflow boundary layer are considered. One is a laminar-like boundary layer with inflow thickness of $\delta_{\inf } = 0.0$ and the other is a turbulent boundary layer with inflow thickness of $\delta_{\inf } = 2.5\,{\text{mm}}$ . The hybrid RANS/LES method acts as a DES (Detached Eddy Simulation) model for the laminar-like inflow condition and a wall-modeled LES for the turbulent inflow condition where the recycling/rescaling method is adopted. Although the turbulent inflow seems to have just minor influences on the supersonic cavity flow without fuel injection, its effects on the mixing and combustion processes are great. It is found that the unsteady turbulent structures in upstream incoming boundary layer interact with the injection jet, resulting in fluctuations of the upstream recirculation region and bow shock, and induce quick dispersion of the hydrogen fuel jet, which enhances the mixing as well as subsequent combustion.  相似文献   

7.
The spatial resolution requirements of the Stochastic Fields probability density function approach are investigated in the context of turbulent premixed combustion simulation. The Stochastic Fields approach is an attractive way to implement a transported Probability Density Function modelling framework into Large Eddy Simulations of turbulent combustion. In premixed combustion LES, the numerical grid should resolve flame-like structures that arise from solution of the Stochastic Fields equation. Through analysis of Stochastic Fields simulations of a freely-propagating planar turbulent premixed flame, it is shown that the flame-like structures in the Stochastic Fields simulations can be orders of magnitude narrower than the LES filter length scale. The under-resolution is worst for low Karlovitz number combustion, where the thickness of the Stochastic Fields flame structures is on the order of the laminar flame thickness. The effect of resolution on LES predictions is then assessed by performing LES of a laboratory Bunsen flame and comparing the effect of refining the grid spacing and filter length scale independently. The usual practice of setting the LES filter length scale equal to grid spacing leads to severe under-resolution and numerical thickening of the flame, and to substantial error in the turbulent flame speed. The numerical resolution required for accurate solution of the Stochastic Fields equations is prohibitive for many practical applications involving high-pressure premixed combustion. This motivates development of a Thickened Stochastic Fields approach (Picciani et al. Flow Turbul. Combust. X, YYY (2018) in order to ensure the numerical accuracy of Stochastic Fields simulations.  相似文献   

8.
Large eddy simulations (LESs) are performed to investigate the Cambridge premixed and stratified flames, SwB1 and SwB5, respectively. The flame surface density (FSD) model incorporated with two different wrinkling factor models, i.e., the Muppala and Charlette2 wrinkling factor models, is used to describe combustion/turbulence interaction, and the flamelet generated manifolds (FGM) method is employed to determine major scalars. This coupled sub-grid scale (SGS) combustion model is named as the FSD-FGM model. The FGM method can provide the detailed species in the flame which cannot be obtained from the origin FSD model. The LES results show that the FSD-FGM model has the ability of describing flame propagation, especially for stratified flames. The Charlette2 wrinkling factor model performs better than the Muppala wrinkling factor model in predicting the flame surface area change by the turbulence. The combustion characteristics are analyzed in detail by the flame index and probability distributions of the equivalence ratio and the orientation angle, which confirms that for the investigated stratified flame, the dominant combustion modes in the upstream and downstream regions are the premixed mode and the back-supported mode, respectively.  相似文献   

9.
Flame turbulence interaction is one of the leading order terms in the scalar dissipation \(\left (\widetilde {\varepsilon }_{c}\right )\) transport equation [35] and is thus an important phenomenon in premixed turbulent combustion. Swaminathan and Grout [36] and Chakraborty and Swaminathan [15, 16] have shown that the effect of strain rate on the transport of \(\widetilde {\varepsilon }_{c}\) is dominated by the interaction between the fluctuating scalar gradients and the fluctuating strain rate, denoted here by \(\overline {\rho }\widetilde {\Delta }_{c}= \overline {\rho {\alpha }\nabla c^{\prime \prime }S_{ij}^{\prime \prime }\nabla c^{\prime \prime }}\) ; this represents the flame turbulence interaction. In order to obtain an accurate representation of this phenomenon, a new evolution equation for \(\widetilde {\Delta }_{c}\) has been proposed. This equation gives a detailed insight into flame turbulence interaction and provides an alternative approach to model the important physics represented by \(\widetilde {\Delta }_{c}\) . The \(\widetilde {\Delta }_{c}\) evolution equation is derived in detail and an order of magnitude analysis is carried out to determine the leading order terms in the \(\widetilde {\Delta }_{c}\) evolution equation. The leading order terms are then studied using a Direct Numerical Simulation (DNS) of premixed turbulent flames in the corrugated flamelet regime. It is found that the behaviour of \(\widetilde {\Delta }_{c}\) is determined by the competition between the source terms (pressure gradient and the reaction rate), diffusion/dissipation processes, turbulent strain rate and the dilatation rate. Closures for the leading order terms in \(\widetilde {\Delta }_{c}\) evolution equation have been proposed and compared with the DNS data.  相似文献   

10.
Large eddy simulation (LES) models for flamelet combustion are analyzed by simulating premixed flames in turbulent stagnation zones. ALES approach based on subgrid implementation of the linear eddy model(LEM) is compared with a more conventional approach based on the estimation of the turbulent burning rate. The effects of subgrid turbulence are modeled within the subgrid domain in the LEM-LES approach and the advection (transport between LES cells) of scalars is modeled using a volume-of-fluid (VOF) Lagrangian front tracking scheme. The ability of the VOF scheme to track the flame as a thin front on the LES grid is demonstrated. The combined LEM-LES methodology is shown to be well suited for modeling premixed flamelet combustion. The geometric characteristics of the flame surfaces, their effects on resolved fluid motion and flame-turbulence interactions are well predicted by the LEM-LES approach. It is established here that local laminar propagation of the flamelets needs to be resolved in addition to the accurate estimation of the turbulent reaction rate. Some key differences between LEM-LES and the conventional approach(es) are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Despite significant advances in the understanding and modelling of turbulent combustion, no general model has been proposed for simulating flames in industrial combustion devices. Recently, the increase in computational possibilities has raised the hope of directly solving the large turbulent scales using large eddy simulation (LES) and capturing the important time-dependant phenomena. However, the chemical reactions involved in combustion occur at very small scales and the modelling of turbulent combustion processes is still required within the LES framework. In the present paper, a recently presented model for the LES of turbulent premixed flames is presented, analysed and discussed. The flamelet hypothesis is used to derive a filtered source term for the filtered progress variable equation. The model ensures proper flame propagation. The effect of subgrid scale (SGS) turbulence on the flame is modelled through the flame-wrinkling factor. The present modelling of the source term is successfully tested against filtered direct numerical simulation (DNS) data of a V-shape flame. Further, a premixed turbulent flame, stabilised behind an expansion, is simulated. The predictions agree well with the available experimental data, showing the capabilities of the model for performing accurate simulations of unsteady premixed flames.  相似文献   

12.
We present an original timesaving joint RANS/LES approach to simulate turbulent premixed combustion. It is intended mainly for industrial applications where LES may not be practical. It is based on successive RANS/LES numerical modelling, where turbulent characteristics determined from RANS simulations are used in LES equations for estimation of the subgrid chemical source and viscosity. This approach has been developed using our TFC premixed combustion model, which is based on a generalization of the Kolmogorov’s ideas. We assume existence of small-scale statistically equilibrium structures not only of turbulence but also of the reaction zones. At the same time, non-equilibrium large-scale structures of reaction sheets and turbulent eddies are described statistically by model combustion and turbulence equations in RANS simulations or follow directly without modelling in LES. Assumption of small-scale equilibrium gives an opportunity to express the mean combustion rate (controlled by small-scale coupling of turbulence and chemistry) in the RANS and LES sub-problems in terms of integral or subgrid parameters of turbulence and the chemical time, i.e. the definition of the reaction rate is similar to that of the mean dissipation rate in turbulence models where it is expressed in terms of integral or subgrid turbulent parameters. Our approach therefore renders compatible the combustion and turbulent parts of the RANS and LES sub-problems and yields reasonable agreement between the RANS and averaged LES results. Combining RANS simulations of averaged fields with LES method (and especially coupled and acoustic codes) for simulation of corresponding nonstationary process (and unsteady combustion regimes) is a promising strategy for industrial applications. In this work we present results of simulations carried out employing the joint RANS/LES approach for three examples: High velocity premixed combustion in a channel, combustion in the shear flow behind an obstacle and the impinging flame (a premixed flame attached to an obstacle).  相似文献   

13.
Large-eddy simulation (LES) of turbulent combustion with premixed flamelets is investigated in this paper. The approach solves the filtered Navier–Stokes equations supplemented with two transport equations, one for the mixture fraction and another for a progress variable. The LES premixed flamelet approach is tested for two flows: a premixed preheated Bunsen flame and a partially premixed diffusion flame (Sandia Flame D). In the first case, we compare the LES with a direct numerical simulation (DNS). Four non-trivial models for the chemical source term are considered for the Bunsen flame: the standard presumed beta-pdf model, and three new propositions (simpler than the beta-pdf model): the filtered flamelet model, the shift-filter model and the shift-inversion model. A priori and a posteriori tests are performed for these subgrid reaction models. In the present preheated Bunsen flame, the filtered flamelet model gives the best results in a priori tests. The LES tests for the Bunsen flame are limited to a case in which the filter width is only slightly larger than the flame thickness. According to the a posteriori tests the three models (beta-pdf, filtered flamelet and shift-inversion) show more or less the same results as the trivial model, in which subgrid reaction effects are ignored, while the shift-filter model leads to worse results. Since LES needs to resolve the large turbulent eddies, the LES filter width is bounded by a maximum. For the present Bunsen flame this means that the filter width should be of the order of the flame thickness or smaller. In this regime, the effects of subgrid reaction and subgrid flame wrinkling turn out to be quite modest. The LES-results of the second case (Sandia Flame D) are compared to experimental data. Satisfactory agreement is obtained for the main species. Comparison is made between different eddy-viscosity models for the subgrid turbulence, and the Smagorinsky eddy-viscosity is found to give worse results than eddy-viscosities that are not dominated by the mean shear. Paper presented on the Eccomas Thematic Conference Computational Combustion 2007, submitted for a special issue of Flow, Turbulence and Combustion.  相似文献   

14.
Large-eddy simulations (LES) combined with the transported probability density function (PDF) method are carried out for two turbulent piloted premixed methane-air jet flames (flame F1 and flame F3) to assess the capability of LES/PDF for turbulent premixed combustion. The conventionally used model for the sub-filter scale mixing time-scale (or the mixing frequency) fails to capture the premixed flames correctly. This failure is expected to be caused by the lack of the sub-filter scale premixed flame propagation property in the sub-filter scale mixing process when the local flame front is under-resolved. It leads to slower turbulent premixed flame propagation and wider flame front. A new model for specifying the sub-filter scale mixing frequency is developed to account for the effect of sub-filter scale chemical reaction on mixing, based on past development of models for the sub-filter scale scalar dissipation rate in premixed combustion. The new model is assessed in the two turbulent premixed jet flames F1 and F3. Parametric studies are performed to examine the new model and its sensitivity when combined with the different mixing models. Significantly improved performance of the new mixing frequency model is observed to capture the premixed flame propagation reasonably, when compared with the conventional model. The sensitivity of the flame predictions is found be relatively weak to the different mixing models in conjunction with the new mixing frequency model.  相似文献   

15.
The present work aims at modeling the entire convection flux \(\overline {\rho \mathbf {u}W}\) in the transport equation for a mean reaction rate \(\overline {\rho W}\) in a turbulent flow, which (equation) was recently put forward by the present authors. In order to model the flux, several simple closure relations are developed by introducing flow velocity conditioned to reaction zone and interpolating this velocity between two limit expressions suggested for the leading and trailing edges of the mean flame brush. Subsequently, the proposed simple closure relations for \(\overline {\rho \mathbf {u}W}\) are assessed by processing two sets of data obtained in earlier 3D Direct Numerical Simulation (DNS) studies of adiabatic, statistically planar, turbulent, premixed, single-step-chemistry flames characterized by unity Lewis number. One dataset consists of three cases characterized by different density ratios and is associated with the flamelet regime of premixed turbulent combustion. Another dataset consists of four cases characterized by different low Damköhler and large Karlovitz numbers. Accordingly, this dataset is associated with the thin reaction zone regime of premixed turbulent combustion. Under conditions of the former DNS, difference in the entire, \(\overline {\rho {u}W}\), and mean, \(\tilde {u}\overline {\rho W}\), convection fluxes is well pronounced, with the turbulent flux, \(\overline {\rho u^{\prime \prime }W^{\prime \prime }}\), showing countergradient behavior in a large part of the mean flame brush. Accordingly, the gradient diffusion closure of the turbulent flux is not valid under such conditions, but some proposed simple closure relations allow us to predict the entire flux \(\overline {\rho \mathbf {u}W}\) reasonably well. Under conditions of the latter DNS, the difference in the entire and mean convection fluxes is less pronounced, with the aforementioned simple closure relations still resulting in sufficiently good agreement with the DNS data.  相似文献   

16.
Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low-NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the linear-eddy model with a one-dimensional counterflow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable, the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results obtained demonstrate that the effects of the resolved strain rate are not dominant for the considered premixed flame configuration and the unstrained turbulent flame speed model is found to perform as well as the one that allows for the strain rate effects.  相似文献   

17.
One commonly-used method for deriving the RANS equations for multicomponent flow is the technique of conditional averaging. In this paper the concept is extended to LES, by introducing the operations of conditional filtering and surface filtering. Properties of the filtered indicator function are investigated mathematically and computationally. These techniques are then used to derive conditionally filtered versions of the Navier–Stokes equations which are appropriate for simulating multicomponent flow in LES. Transport equations for the favre-averaged indicator function and the unresolved interface properties (the wrinkling and the surface area per unit volume) are also derived. Since the paper is directed towards modelling premixed combustion in the flamelet regime, closure of the equations is achieved by introducing physical models based on the picture of the flame as a wrinkled surface separating burnt and unburnt components of the fluid. This leads to a set of models for premixed turbulent combustion of varying complexity. The results of applying one of this set of models to propagation of a spherical flame in isotropic homogeneous turbulence are analysed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
李国庆  杜扬  齐圣  王世茂  李蒙  李润 《爆炸与冲击》2018,38(6):1286-1394
采用WALE模型和Zimont预混火焰模型对内置圆孔障碍物油气泄压爆炸火焰特性进行了大涡模拟,并将大涡模拟计算结果和RNG k-ε湍流模型计算结果以及实验结果进行对比分析,验证了大涡模拟的精确性。结果表明:(1)大涡模拟在预测油气爆炸超压、火焰传播速度以及火焰形态变化等方面比RNG k-ε湍流模型精确度更高,且能表现出更多流场的精细化结构;(2)障碍物诱导管道内形成湍流度较高的流场区域,导致火焰产生褶皱弯曲变形,增大火焰面积,加速火焰传播;(3)爆炸超压、火焰传播速度和火焰面积内在联系密切,具有显著的耦合性,且随时间的变化趋势存在高度的一致性。  相似文献   

19.
We formulated a paradox in the theory of turbulent premixed flame in the flamelet regime: discrepancy between the Damköhler (1940) and Shelkin (1943) estimate of the turbulence flame speed \(U_{t} \sim {u}^{\prime }\) in the case of strong turbulence (\({u}^{\prime }>>S_{L} \)) and numerous experiments that show a strong dependence of Ut on the speed of the instantaneous flame SL. We name this discrepancy the Damköhler-Shelkin paradox. The first aim of the research is to validate and clarify this estimate, which is based on intuitive considerations, as the paradox must be a statement that seems contradictory to observations but is actually true. We analysed the turbulent flame in the context of the original hyperbolic combustion equation that directly describes the leading edge of the flame, which is a locus of the Zel’dovich “leading points” controlling the speed of the turbulent flame. Analysis of the corresponding characteristic equations results in the expression for speed on the steady-state turbulent flame \(U_{t} ={u}^{\prime }\sqrt {1+(S_{L} /{u}^{\prime })^{2}} \), which is the case when \({u}^{\prime }>>S_{L} \) becomes \(U_{t} \cong {u}^{\prime }\). This result confirms and improves the Damköhler-Shelkin estimate \(U_{t} \sim {u}^{\prime }\). The second aim is to resolve the Damköhler-Shelkin paradox. We explain the discrepancy with observations by the fact that turbulent flames are transient due to insufficient residence time in the real burners to reach statistical equilibrium of wrinkle structures of the random flame surface. We consider the transient flame in the intermediate asymptotic stage when the small-scales wrinkles are in statistical equilibrium, while at the same time the large-scale wrinkles are far from equilibrium. The expressions for the flame speed and width, which we deduce using the dimensional analysis and general properties of the ransom surface, \(U_{t} \sim ({u}^{\prime }S_{L})^{1/2}\) and \(\delta _{t} \sim ({u}^{\prime }Lt)^{1/2}\), show that this transient flame is in fact a turbulent mixing layer travelling with constant speed Ut depending on SL, the intermediate steady propagation (ISP) flame. Qualitative estimations of the times required for the small-scale and large-scale wrinkles to reach statistical equilibrium show that the turbulent Bunsen- and V-flames correspond to the intermediated asymptotic stage, and the turbulent flames with a complete equilibrium structure of the wrinkled flamelet surface are not attainable under laboratory conditions. We present the results of numerical simulations of the impingent flames, which count in favour of the belief that these flames are also transient.  相似文献   

20.
This paper proposes a combustion model based on a turbulent flame speed closure (TFC) technique for large eddy simulation (LES) of premixed flames. The model was originally developed for the RANS (Reynolds Averaged Navier Stokes equations) approach and was extended here to LES. The turbulent quantities needed for calculation of the turbulent flame speed are obtained at the sub grid level. This model was at first experienced via an test case and then applied to a typical industrial combustor with a swirl stabilized flame. The paper shows that the model is easy to apply and that the results are promising. Even typical frequencies of arising combustion instabilities can be captured. But, the use of compressible LES may also lead to unphysical pressure waves which have their origin in the numerical treatment of the boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号