首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bichromophoric system Ru-Ru(C)-PI ([(bpy)3Ru-Ph-Ru(dpb)(Metpy-PI)][PF6]3, where bpy is 2,2'-bipyridine, Hdpb is 1,3-di(2-pyridyl)-benzene, Metpy is 4'-methyl-2,2':6',2' '-terpyridine and PI is pyromellitimide) containing two Ru(II) polypyridyl chromophores with a N6 and a N5C ligand set, respectively, was synthesized and characterized. Its photophysical properties were investigated and compared to those of the monochromophoric cyclometalated complexes Ru(C)-PI ([Ru(dpb)(Metpy-PI)][PF6]), Ru(C)-phi-PI ([Ru(dpb)(ttpy-PI)][PF6], ttpy is 4'-p-tolyl-2,2':6',2' '-terpyridine), Ru(C)-phi ([Ru(dpb)(ttpy)][PF6]), and Ru(C) ([Ru(dpb)(Metpy)][PF6]). Excitation of the Ru(C) unit in the dyads leads to oxidative quenching, forming the Ru(C)(III)-phi-PI*- and Ru(C)(III)-Pl.- charge-separated (CS) states with k(f)(ET) = 7.7 x 10(7) s(-1) (CH3CN, 298 K) in the tolyl-linked Ru(C)-phi-PI and k(f)(ET) = 4.4 x 10(9) s(-1) (CH2Cl2, 298 K) in the methylene-linked Ru(C)-PI. In the Ru-Ru(C)-PI triad, excitation of the Ru(C) chromophore leads to dynamics similar to those in the Ru(C)-PI dyad, generating the Ru(II)-Ru(C)(III)-PI*- CS state, whereas excitation of the Ru unit results in an initial energy transfer (k(EnT) = 4.7 x 10(11) s(-1)) to the cyclometalated Ru(C) unit. Subsequent electron transfer to the PI acceptor results in the formation of the same Ru(II)-Ru(C)(III)-PI*- CS state with k(f)(ET) = 5.6 x 10(9) s(-1) that undergoes rapid recombination with k(b)(ET) = 1 x 10(10) s(-1) (CH2Cl2, 298 K). The fate of the Ru(II)-Ru(C)(III)-PI*- CS state upon a second photoexcitation was studied by pump-pump-probe experiments in an attempt to detect the fully charge-separated Ru(III)-Ru(C)(II)-PI*- state.  相似文献   

2.
Three ruthenium sulfide clusters with labile CH3CN ligands have been photochemically synthesized. Irradiation of [(cymene)3Ru3S2](PF6)2 ([1](PF6)2) in CH3CN gives [(cymene)2(CH3CN)3Ru3S2](PF6)2 ([2](PF6)2), which has been characterized by 1H NMR spectroscopy, ESI mass spectrometry, and chemical reactivity. Treatment of [2](PF6)2 with PPh3 gives [(cymene)2(CH3CN)2(PPh3)Ru3S2](PF6)2 ([3](PF6)2) and [(cymene)2(CH3CN)(PPh3)2Ru3S2](PF6)2 ([4](PF6)2), while treatment with 1,4,7-trithiacyclononane (9S3) gives [(cymene)2(9S3)Ru3S2](PF6)2 ([5](PF6)2). A crystallographic study demonstrated that the Ru3 core in [3](PF6)2, [4](PF6)2, and [5](PF6)2 is distorted with a pair of elongated Ru-Ru bonds. Cyclic voltammetry shows that [3](PF6)2 and [4](PF6)2 undergo two closely spaced reversible one-electron reductions whereas [5](PF6)2 undergoes one irreversible one-electron reduction and one reversible one-electron reduction. Prolonged irradiation of [1](PF6)2 in CH3CN causes decomposition, resulting in the pentanuclear cluster [(cymene)4Ru5S4](PF6)2 ([6](PF6)2).  相似文献   

3.
The mixed-metal supramolecular complexes [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 (tpy = 2,2':6',2'-terpyridine and tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine) were synthesized and characterized. These complexes contain ruthenium bridged by tppz to platinum centers to form stereochemically defined linear assemblies. X-ray crystallographic determinations of the two complexes confirm the identity of the metal complexes and reveal intermolecular interactions of the Pt sites in the solid state for [(tpy)Ru(tppz)PtCl](PF6)3 with a Pt...Pt distance of 3.3218(5) A. The (1)H NMR spectra show the expected splitting patterns characteristic of stereochemically defined mixed-metal systems and are assigned with the use of (1)H-(1)H COSY and NOESY. Electronic absorption spectroscopy displays intense ligand-based pi --> pi* transitions in the UV and MLCT transitions in the visible. Electrochemically [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 display reversible Ru (II/III) couples at 1.63 and 1.83 V versus Ag/AgCl, respectively. The complexes display very low potential tppz (0/-) and tppz(-/2-) couples, relative to their monometallic synthons, [(tpy)Ru(tppz)](PF6)2 and [Ru(tppz)2](PF6)2, consistent with the bridging coordination of the tppz ligand. The Ru(dpi) --> tppz(pi*) MLCT transitions are also red-shifted relative to the monometallic synthons occurring in the visible centered at 530 and 538 nm in CH3CN for [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4, respectively. The complex [(tpy)Ru(tppz)PtCl](PF6)3 displays a barely detectable emission from the Ru(dpi) --> tppz(pi*) (3)MLCT in CH 3CN solution at RT. In contrast, [ClPt(tppz)Ru(tppz)PtCl](PF6)4 displays an intense emission from the Ru(dpi) --> tppz(pi*) (3)MLCT state at RT with lambda max(em) = 754 nm and tau = 80 ns.  相似文献   

4.
The tetradentate ligands, 2,2'-(1H-pyrazole-3,5-diyl)bis(4- methylpyridine) (4,4'-Me2dppzH), 2,2'-(1H-pyrazole-3,5-diyl)bis(6-methylpyridine) (6,6'-Me2dppzH), 3,5-di(pyrid-2-yl)pyrazole (dppzH), and dipyridyloxadiazole (dpo) react with either Ru(trpy)Cl3 or trans-Ru(trpy)Cl2(NCCH3), where trpy is 2,2',2'-terpyridine, to form a variety of Ru(II) complexes. Among these are the symmetrical chloro-bridged Ru(II) dimer and the "in" and "out" geometric isomers of the monometallic Ru(II) containing species where "in" and "out" refer to the orientation of the Ru-Cl vector relative to the centroid of the ligand backbone. Thirteen complexes were prepared and painstakingly purified by careful recrystallization and/or exhaustive column chromatography. These complexes were characterized by 1H and 13C NMR, electronic absorption, and infrared spectroscopy. Additionally, [Ru2(tryp)2(6,6'-Me2dppz)mu-Cl](BF4)2 (3b(BF4)2), [Ru2(trpy)2(4,4'-Me2dppz)mu-Cl](PF6)2.0.5MeOH (3c), [Ru2(trpy)2(6,6'-Me2dppz)(CH2C(O)CH3)](PF6)2.0.5(CH3)2CO (9b), "in"-[Ru(trpy)(4,4'-Me2dppz)Cl](PF6).(CH3)2CO (1c), and "out"-[Ru(trpy)(dpo)Cl](PF6).(CH3)2CO (2d) were characterized by X-ray crystallography. Several ligand substitution reactions were attempted. For example, [Ru2(trpy)2(6,6'-Me2dppz)mu-Cl](BF4)2 (3b) was reacted with hydroxide ion to produce [Ru2(trpy)2(6,6'-Me2dppz)mu-OH](PF6)2 (6b). Complex 6b reacts with benzyl bromide to produce [Ru2(trpy)2(6,6'-Me2dppz)mu-Br](PF6)2 (7b) or with (CH3)3Sil to produce [Ru2(trpy)2(6,6'-Me2dppz)mu-I](PF6)2 (8b). of 6b with acetone forms the methyl enolate complex [Ru2(trpy)2(6,6'-Me2dppz)(CH2COCH3)](PF6)2 (9b) while, analogously to a Cannizarro reaction, the reaction with benzaldehyde forms the bridging benzoate complex [Ru2(trpy)2(6,6'-Me2dppz)(C6H4CO2)](PF6)2 (11b). The bridging azide complex [Ru2(trpy)2(6,6'-Me2dppz)mu-N3](PF6)2 (10b) is formed by reaction of 6b with (CH3)3-SiN3. Additionally, the chloride ligands of the monometallic complexes of "in"-[Ru(trpy)(dpo)Cl](PF6) (1d), "in"-[Ru(trpy)(4,4'-Me2dpo)Cl](PF6)] (1e), and "out"-[Ru(trpy)(dpo)Cl](PF6) (2d) were substituted with water to form their respective aqua complexes, 4d, 4e, and 5d. All of the complexes exhibit broad unsymmetrial absorption bands in the visible portion of the electromagnetic spectrum. The dimetallic complexes 3b and 3c exhibit two, 1e- reversible oxidation waves at +0.72 and +1.15 V, and at +0.64 and +1.13 V, respectively. These complexes were not emissive.  相似文献   

5.
The salts [Ru(bpy)3](PF6)2, cis-[Ru(bpy)2(py)2](PF6)2, trans-[Ru(bpy)2(4-Etpy)2](PF6)2, [Ru(tpy)2](PF6)2, and [Re(bpy)(CO)3(4-Etpy)](PF6) (bpy=2,2'-bipyridine, py=pyridine, 4-Etpy=4-ethylpyridine, and tpy=2,2':6',2-terpyridine) have been incorporated into poly(methyl methacrylate) (PMMA) films and their photophysical properties examined by both steady-state and time-resolved absorption and emission measurements. Excited-state lifetimes for the metal salts incorporated in PMMA are longer and emission energies enhanced due to a rigid medium effect when compared to fluid CH3CN solution. In PMMA part of the fluid medium reorganization energy, lambdaoo, contributes to the energy gap with lambdaoo approximately 700 cm-1 for [Ru(bpy)3](PF6)2 from emission measurements. Enhanced lifetimes can be explained by the energy gap law and the influence of the excited-to-ground state energy gap, Eo, on nonradiative decay. From the results of emission spectral fitting on [Ru(bpy)3](PF6)2* in PMMA, Eo is temperature dependent above 200 K with partial differentialEo/ partial differentialT=2.8 cm-1/deg. cis-[Ru(bpy)2(py)2](PF6)2 and trans-[Ru(bpy)2(4-Etpy)2](PF6)2 are nonemissive in CH3CN and undergo photochemical ligand loss. Both emit in PMMA and are stable toward ligand loss even for extended photolysis periods. The lifetime of cis-[Ru(bpy)2(py)2](PF6)2* in PMMA is temperature dependent, consistent with a contribution to excited-state decay from thermal population and decay through a low-lying dd state or states. At temperatures above 190 K, coinciding with the onset of the temperature dependence of Eo for [Ru(bpy)3](PF6)2*, lifetimes become significantly nonexponential. The nonexponential behavior is attributed to dynamic coupling between MLCT and dd states, with the lifetime of the latter greatly enhanced in PMMA with tau approximately 3 ns. On the basis of these data and data in 4:1 (v/v) EtOH/MeOH, the energy gap between the MLCT and dd states is decreased by approximately 700 cm-1 in PMMA with the dd state at higher energy by DeltaH0 approximately 1000 cm-1. The "rigid medium stabilization effect" for cis-[Ru(bpy)2(py)2](PF6)2* in PMMA is attributed to inhibition of metal-ligand bond breaking and a photochemical cage effect.  相似文献   

6.
NH-Bridged tetradentate ligands were synthesized to achieve stable trans Ru(II) bis(polypyridyl) complexes. The polypyridyl part of the ligand was either symmetric, as in N,N-bis(1,10-phenanthroline-2-yl)amine (phen-NH-phen), or asymmetric, as in N-(1,10-phenanthroline-2-yl)-N-(6-yl-dipyridyl[2,3-a:2',3'-c]phenazine)amine (dppz-NH-phen). Protonation of phen-NH-phen with trifluoroacetic acid and the subsequent reaction with RuCl3 yield trans-[Ru(phen-NH-phen)Cl2]. The chloro ligands in this compound can easily be replaced by stronger ligands, such as CH3CN and DMSO. In this way, complexes trans-[Ru(phen-NH-phen)(CH3CN)(DMSO)](PF6)2 (1), trans-[Ru(phen-NH-phen)(DMSO)2](PF6)2 (2), and trans-[Ru(phen-NH-phen)(CH3CN)2](PF6)2 (3) were obtained. X-ray structures were determined for 1 and 3. Following a procedure similar to that used with phen-NH-phen, the complex trans-[Ru(dppz-NH-phen)(CH3CN)2](PF6)2 (4) was obtained. To our knowledge, this is the first reported trans ruthenium(II) bis(polypyridyl) complex with two different polypyridyl ligands in the equatorial plane.  相似文献   

7.
4,5-Bis(terpyridyl)-2,7-di-tert-butyl-9,9-dimethylxanthene (btpyxa) was prepared to serve as a new bridging ligand via Suzuki coupling of terpyridin-4'-yl triflate and 2,7-di-tert-butyl-9,9-dimethylxanthene-4,5-diboronic acid. The reaction of btpyxa with either 1 equiv or an excess of PtCl(2)(cod) (cod = 1,5-cyclooctadiene) followed by anion exchange afforded mono- and dinuclear platinum complexes [(PtCl)(btpyxa)](PF(6)) ([1](PF(6))) and [(PtCl)(2)(btpyxa)](PF(6))(2) ([2](PF(6))(2)), respectively. The X-ray crystallography of [1](PF(6)).CHCl(3) revealed that the two terpyridine units in the ligand are nearly parallel to each other. The heterodinuclear complex [(PtCl)[Ru((t)Bu(2)SQ)(dmso)](btpyxa)](PF(6))(2) ([4](PF(6))(2)) (dmso = dimethyl sulfoxide; (t)Bu(2)SQ = 3,5-di-tert-butyl-1,2-benzosemiquinone) and the monoruthenium complex [Ru((t)Bu(2)SQ)(dmso)(trpy)](PF(6)) ([5](PF(6))) (trpy = 2,2':6',2' '-terpyridine) were also synthesized. The CV of [2](2+) suggests possible electronic interaction between the two Pt(trpy) groups, whereas such an electronic interaction was not suggested by the CV of [4](2+) between Pt(trpy) and Ru((t)Bu(2)SQ) frameworks.  相似文献   

8.
In an effort to create a molecule that can absorb low energy visible or near‐infrared light for photochemotherapy (PCT), the new complexes [Ru(biq)2(dpb)](PF6)2 (1, biq = 2,2′‐biquinoline, dpb = 2,3‐bis(2‐pyridyl)benzoquinoxaline) and [(biq)2Ru(dpb)Re(CO)3Cl](PF6)2 (2) were synthesized and characterized. Complexes 1 and 2 were compared to [Ru(bpy)2(dpb)](PF6)2 (3, bpy = 2,2′‐bipyridine) and [Ru(biq)2(phen)](PF6)2 (4, phen = 1,10‐phenanthroline). Distortions around the metal and biq ligands were used to explain the exchange of one biq ligand in 4 upon irradiation. Complex 1, however, undergoes photoinduced dissociation of the dpb ligand rather than biq under analogous experimental conditions. Complex 3 is not photoactive, providing evidence that the biq ligands are crucial for ligand photodissociation in 1. The crystal structures of 1 and 4 are compared to explain the difference in photochemistry between the complexes. Complex 2 absorbs lower energy light than 1, but is photochemically inert although its crystal structure displays significant distortions. These results indicate that both the excited state electronic structure and steric bulk play key roles in bidentate photoinduced ligand dissociation. The present work also shows that it is possible to stabilize sterically hindered Ru(II) complexes by the addition of another metal, a property that may be useful for other applications.  相似文献   

9.
The synthesis, characterization, and photophysical properties of the N6-N5C bichromophoric [(bpy)2Ru(I)Ru(ttpy)][PF6]3 (bpy is 2,2'-bipyridine and ttpy is 4'-p-tolyl-2,2':6',2'-terpyridine) and [(bpy)2Ru(II)Ru(ttpy)][PF6]3 (I and II are bpy-dipyridylbenzene ditopic ligands bridged by an ethynyl and phenyl unit, respectively) complexes are reported together with the model mononuclear complexes [(bpy)2Ru(I)][PF6]2, [(bpy)2Ru(II)][PF6]2, [Ru(VI)(ttpy)][PF6] (VI is 3,5-di(2-pyridyl)-biphenyl) and [Ru(dpb)(ttpy)][PF(6)] (Hdpb is 1,3-di(2-pyridyl)-benzene). The electrochemical data show that there is little ground state electronic communication between the metal centers in the bimetallic complexes. Selective excitation of the N(5)C unit in the bichromophoric systems leads to luminescence typical for a bis-tridentate cyclometallated ruthenium complex and is similar to the [Ru(VI)(ttpy)][PF6] model complex. In contrast, the luminescence from the tris-bidentate N6 unit is efficiently quenched by energy transfer to the N5C unit. The energy transfer rate has been determined by femtosecond pump-probe measurements to 0.7 ps in the ethynyl-linked [(bpy)2Ru(I)Ru(ttpy)][PF6]3 and to 1.5 ps in the phenyl-linked [(bpy)2Ru(II)Ru(ttpy)][PF6]3 (in acetonitrile solution at 298 K), and is inferred to occur via a Dexter mechanism.  相似文献   

10.
Adaptive laser pulse shaping has proven to be expeditious for discovering laser pulse shapes capable of manipulating complex systems. However, if adaptive control is to be a valuable interrogative technique that informs physical and chemical research, methods that make it possible to infer mechanistic information from experimental results must be developed. Here, we demonstrate multivariate statistical analysis to extract a single control variable from results of a 137-parameter adaptive laser pulse-shaping optimization of multiphoton electronic excitation in a ruthenium(II) coordination complex in solution. We show that this single variable can be used to linearly manipulate the observed fitness, which is determined by the ratio of molecular emission to second harmonic generation of the laser pulse, over the range explored during the adaptive optimization. Further, manipulation of this variable reveals the latent control mechanism. For this system, that mechanism entails focusing the second harmonic power spectrum of the laser field in a spectral region where the probability of two-photon absorption by the molecule is also large. The statistical tools developed are general and will help elucidate control mechanisms in future adaptive pulse-shaping experiments.  相似文献   

11.
The sensitizers [Ru(bpy)2(deeb)](PF6)2 (1), [Ru(bpy)2(bpy)-(E-Ph)-Ad](PF6)2 (2), and [Ru(bpy)2(bpy)-(E-Ph)2-Ad](PF6)2 (3), where deeb is 4,4'-(COOCH2CH3)2-2,2'-bipyridine, E-Ph is phenylethynyl, and Ad are tripod shaped bpy ligands based on 1,3,5,7-tetraphenyladamantane, were anchored to mesoporous nanocrystalline (anatase) TiO2 thin films and studied in regenerative solar cells with 0.1 M LiI/0.005 M I2 dichloromethane electrolyte. Over three decades of 488 nm irradiance, the open circuit photovoltage increased markedly with the distance between the Ru center and the surface binding groups, 1 (7 A) < 2 (18 A) < 3 (24 A). The diode equation accurately models the irradiance dependent data and indicates that the TiO2(e-) --> I3- (and/or I2) charge recombination rate constants were decreased by a factor of 20 for 2/TiO2 and 280 for 3/TiO2 relative to 1/TiO2. The results suggest that control of the sensitizer-TiO2 orientation is important for efficient power optimization.  相似文献   

12.
We report the synthesis of free 1,6,7,12-tetraazaperylene (tape). Tape was obtained from 1,1'-bis-2,7-naphthyridine by potassium promoted cyclization followed by oxidation with air. Mono- and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes of the general formulas [Ru(L-L)(2)(tape)](PF(6))(2), [1](PF(6))(2)-[5](PF(6))(2), and [{Ru(L-L)(2)}(2)(μ-tape)](PF(6))(4), [6](PF(6))(4)-[10](PF(6))(4), with{L-L = phen, bpy, dmbpy (4,4'-dimethyl-2,2'-bipyridine), dtbbpy (4,4'-ditertbutyl-2,2'-bipyridine) and tmbpy (4,4'5,5'-tetramethyl-2,2'-bipyridine)}, respectively, were synthesized. The X-ray structures of tape·2CHCl(3) and the mononuclear complexes [Ru(bpy)(2)(tape)](PF(6))(2)·0.5CH(3)CN·0.5toluene, [Ru(dmbpy)(2)(tape)](PF(6))(2)·2toluene and [Ru(dtbbpy)(2)(tape)](PF(6))(2)·3acetone·0.5H(2)O were solved. The UV-vis absorption spectra and the electrochemical behavior of the ruthenium(ii) tape complexes were explored and compared with the data of the analogous dibenzoeilatin (dbneil), 2,2'-bipyrimidine (bpym) and tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazin (tpphz) species.  相似文献   

13.
Overlayer thin films of vinylbipyridine (vbpy)-containing Ru and Zn complexes have been formed on top of ruthenium dye complexes adsorbed to TiO(2) by reductive electropolymerization. The goal was to create an efficient, water-stable photoelectrode or electrodes. An adsorbed-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Ru(vbpy)(3)](PF(6))(2) surface composite displays excellent stability toward dissolution in water, but the added overlayer film greatly decreases incident photon-to-current conversion efficiencies (IPCE) in propylene carbonate with I(3)(-)/I(-) as the carrier couple. An ads-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Zn(vbpy)(3)](PF(6))(2) composite displays no loss in IPCE compared to ads-[Ru(vbpy)(2)(dcb)](PF(6))(2) but is susceptible to film breakdown in the presence of water by solvolysis and loss of the cross-linking Zn(2+) ions. Success was attained with an ads-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Ru(vbpy)(2)(dppe)](PF(6))(2) composite. In this case the electropolymerized layer is transparent in the visible. The composite electrode is stable in water, the IPCE in propylene carbonate with I(3)(-)/I(-) is comparable to the adsorbed complex, and a significant IPCE is observed in water with the quinone/hydroquinone carrier couple. The assembly [(bpy)(2)(CN)Ru(CN)Ru(vbpy)(2)(NC)Ru(CN)(bpy)(2)](PF(6))(2) ([Ru(CN)Ru(NC)Ru](PF(6))(2)) adsorbs spontaneously on TiO(2), and electropolymerization of thin layers of the assembly to give ads-[Ru(CN)Ru(NC)Ru](PF(6))(2)/poly-[Ru(CN)Ru(NC)Ru](PF(6))(2) enhances IPCE and has no deleterious effect on the IPCE/Ru.  相似文献   

14.
A series of mixed ligand ruthenium(II) complexes [Ru(pdto)(diimine)](ClO4)2/(PF6)2 1-3 and [Ru(bbdo)(diimine)](ClO4), 4-6, where pdto is 1,8-bis(pyrid-2-yl)-3,6-dithiooctane, bbdo is 1,8-bis(benzimidazol-2-yl)-3,6-dithiooctane and diimine is 1,10-phenanthroline (phen), dipyrido-[3,2-d:2',3'-f]-quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been isolated and characterised by analytical and spectral methods. The complexes [Ru(pdto)(phen)](PF6)2 la, [Ru(pdto)(dpq)(Cl](PF6) 2a, [Ru(bbdo)(phen)](PF6)2 4a and [Ru(bbdo)(dpq)](ClO4)2 5 have been structurally characterized and their coordination geometries around ruthenium(II) are described as distorted octahedral. In la, 4a and 5 the two thioether sulfur and two py/bzim nitrogen atoms of the tetradentate pdto/bbdo ligand are folded around Ru(II) to give predominantly a "cis-alpha" configuration. (I)H NMR spectral data of the complexes support this configuration in solution. In [Ru(pdto)(dpq)Cl](PF6) 2a with a distorted octahedral coordination geometry, one of the two py nitrogens of pdto is not coordinated. The DNA binding constants (Kb: 2, 2.00 +/- 0.02 x 10(4) M(-1), s = 1.0; 3, 3.00 +/- 0.01 x 10(6) M(-1), s = 1.3) determined by absorption spectral titrations of the complexes with CT DNA reveal that 3 interacts with DNA more tightly than 2 through partial intercalation of the extended planar ring of coordinated dppz with the DNA base stack. The DNA binding affinities of the complexes increase with increase in the number of planar aromatic rings in the co-ligand, and on replacing both the py moieties in pdto complexes (1-3) by bzim moieties to give bbdo complexes (4-6). Upon interaction with CT DNA the complexes 1, 2, 5 and 6 show a decrease in anodic current in the cyclic voltammograms. On the other hand, interestingly, 3 and 4 show an increase in anodic current suggesting their involvement in electrocatalytic guanine oxidation. Interestingly, of all the complexes, only 6 alters the superhelicity of DNA upon binding with supercoiled pBR322 DNA. The cytotoxicities of the dppz complexes 3 and 6, which avidly bind to DNA, have been examined by screening them against cell lines of different cancer origins. It is noteworthy that 6 exhibits selectivity with higher cytotoxicity against the melanoma cancer cell line (A375) than other cell lines, potency approximately twice that of cisplatin and toxicity to normal cells 3 and 90 times less than cisplatin and adriamycin respectively.  相似文献   

15.
Three ruthenium(II) polypyridine complexes of general formula [Ru(bpy)(3-n)(TTF-dppz)n](PF6)2 (n=1-3, bpy=2,2'-bipyridine), with one, two or three redox-active TTF-dppz (4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2',3'-c]phenazine) ligands, were synthesised and fully characterised. Their electrochemical and photophysical properties are reported together with those of the reference compounds [Ru(bpy)3](PF6)2, [Ru(dppz)3](PF6)2 and [Ru(bpy)2(dppz)](PF6)2 and the free TTF-dppz ligand. All three complexes show intraligand charge-transfer (ILCT) fluorescence of the TTF-dppz ligand. Remarkably, the complex with n=1 exhibits luminescence from the Ru(2+)-->dppz metal-to-ligand charge-transfer ((3)MLCT) state, whereas for the other two complexes, a radiationless pathway via electron transfer from a second TTF-dppz ligand quenches the (3)MLCT luminescence. The TTF fragments as electron donors thus induce a ligand-to-ligand charge-separated (LLCS) state of the form TTF-dppz- -Ru(2+)-dppz-TTF(+). The lifetime of this LLCS state is approximately 2.3 micros, which is four orders of magnitude longer than that of 0.4 ns for the ILCT state, because recombination of charges on two different ligands is substantially slower.  相似文献   

16.
The synthesis and characterization of Ru(II) terpyridine complexes derived from 4'-functionalized 2,2':6',2'-terpyridine ligands by a multi step procedure have been described. The complexes are redox-active, showing both metal-centred (oxidation) and ligand-centred (reduction) processes. The antibacterial and antifungal activity of the synthesized ruthenium(II) complexes [Ru(attpy)2](PF6)2 (attpy = 4'-(4-acryloyloxymethylphenyl)-2,2':6',2'-terpyridine); [Ru(mttpy)2](PF6)2 (mttpy = 4'-(4-methacryloyloxymethylphenyl)-2,2':6',2'- terpyridine); [Ru(mttpy)(MeOPhttpy)](PF6)2 (MeOPhttpy = 4'-(4-methoxyphenyl)-2,2':6',2'-terpyridine); and [Ru(mttpy)(ttpy)](PF6)2 (ttpy = 4'-(4-methylphenyl)-2,2':6',2'-terpyridine) were tested against four human pathogens (Proteus vulgaris, Proteus mirabilis, Pseudomonas aeruginosa and Escherichia coli) and five plant pathogens (Curvularia lunata, Fusarium oxysporum, Fusarium udum, Macrophomina phaseolina and Rhizoctonia solani) by the well diffusion method and MIC values of the complexes are reported. A biological study of the complexes indicated that the complexes [Ru(mttpy)2](PF6)2 and [Ru(mttpy)(MeOPhttpy)](PF6)2 exhibit very good activity against most of the test pathogens and their activity is better than those of some of the commercially available antibiotics like tetracycline and the fungicide carbendazim.  相似文献   

17.
We report the preparation of complexes in which ruthenium(II) bis(bipyridyl) groups are coordinated to oligothiophenes via a diphenylphosphine linker and a thienyl sulfur (P,S bonding) to give [Ru(bpy)(2)PT(3)-P,S](PF(6))(2) (bpy = 2,2'-bipyridyl, PT(3) = 3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMeT(3)-P,S](PF(6))(2) (PMeT(3) = 3'-(diphenylphosphino)-5-methyl-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMe(2)T(3)-P,S](PF(6))(2) (PMe(2)T(3) = 5,5' '-dimethyl-3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), and [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2) (PDo(2)T(5) = 3,3' ' '-didodecyl-3' '-diphenylphosphino-2,2':5',2' ':5' ',2' ':5' ',2' ' '-pentathiophene). These complexes react with base, resulting in the complexes [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and [Ru(bpy)(2)PDo(2)T(5)-P,C]PF(6), where the thienyl carbon is bonded to ruthenium (P,C bonding). The P,C complexes revert back to the P,S bonding mode by reaction with acid; therefore, metal-thienyl bonding is reversibly switchable. The effect of interaction of the metal groups in the different bonding modes with the thienyl backbone is reflected by changes in alignment of the thienyl rings in the solid-state structures of the complexes, the redox potentials, and the pi --> pi transitions in solution. Methyl substituents attached to the terthiophene groups allow observation of the effect of these substituents on the conformational and electronic properties and aid in assignments of the electrochemical data. The PT(n)() ligands bound in P,S and P,C bonding modes also alter the electrochemical and spectroscopic properties of the ruthenium bis(bipyridyl) group. Both bonding modes result in quenching of the oligothiophene luminescence. Weak, short-lived Ru --> bipyridyl MLCT-based luminescence is observed for [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2), [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), and [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and no emission is observed for the alternate bonding mode of each complex.  相似文献   

18.
The synthesis and photophysical and electrochemical properties of tris(homoleptic) complexes [Ru(tpbpy)3](PF6)2 (1) and [Os(tpbpy)3](PF6)2 (2) (tpbpy = 6'-tolyl-2,2':4',2' '-terpyridine) are reported. The ligand tpbpy is formed as the side product during the synthesis of 4'-tolyl-2,2':6',2' '-terpyridine (ttpy) and characterized by single-crystal X-ray diffraction: monoclinic, P21/c. The tridentate tpbpy coordinates as a bidentate ligand. The complexes 1 and 2 exhibit two intense absorption bands in the UV region (200-350 nm) assignable to the ligand-centered (1LC) pi-pi* transitions. The ruthenium(II) complex exhibits a broad absorption band at 470 nm while the osmium(II) complex exhibits an intense absorption band at 485 nm and a weak band at 659 nm assignable to the MLCT (dpi-pi*) transitions. A red shifting of the dpi-pi* MLCT transition is observed on going from the Ru(II) to the Os(II) complex as expected from the high-lying dpi Os orbitals. These complexes exhibit ligand-sensitized emission at 732 and 736 nm, respectively, upon light excitation onto their MLCT band through excitation of higher energy LC bands at room temperature. The MLCT transitions and the emission maxima of 1 and 2 are substantially red-shifted compared to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2. The emission of both the complexes in the presence of acid is completely quenched indicating that the emission is not due to the protonation of the coordinated ligands. Our results indicate the occurrence of intramolecular energy transfer from the ligand to the metal center. Both the complexes undergo quasi-reversible metal-centered oxidation, and the E1/2 values for the M(II)/M(III) redox couples (0.94 and 0.50 V versus Ag/Ag+ for 1 and 2, respectively) are cathodically shifted with respect to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2 (E1/2 = 1.28 and 1.09 V versus Ag/Ag+, respectively). The tris(homoleptic) Ru(II) and Os(II) complexes 1 and 2 could be used to construct polynuclear complexes by using the modular synthetic approach in coordination compounds by exploiting the coordinating ability of the pyridine substituent. Furthermore, these complexes offer the possibility of studying the influence of electron-withdrawing and electron-donating substituents on the photophysical properties of Ru(II) and Os(II) polypyridine complexes.  相似文献   

19.
Bark T  Thummel RP 《Inorganic chemistry》2005,44(24):8733-8739
A synthetic protocol involving the Friedl?nder reaction of 8-amino-7-quinolinecarbaldehyde followed by potassium dichromate oxidation was applied to 2,3,4-pentanetrione-3-oxime and 1-(pyrid-2'-yl)propane-1,2-dione-1-oxime to provide the ligands di-(phenathrolin-2-yl)-methanone (1) and phenanthrolin-2-yl-pyrid-2-yl-methanone (8), respectively. Ligand 1 complexed as a planar tetradentate with Pd(II) to form [Pd(1)](BF4)2 and with Ru(II) and two 4-substituted pyridines (4-R-py) to form [Ru(1)(4-R-py)2](PF6)2 where R = CF3, CH3, and Me2N. With [Ru(bpy)2Cl2], the dinuclear complex [(bpy)2Ru(1)Ru(bpy)2](PF6)4 was formed (bpy = 2,2'-bipyridine). Ligand 8 afforded the homoleptic Ru(II) complex [Ru(8)2](PF6)2, as well as the heteroleptic complex [Ru(8)(tpy)](PF6)2 (tpy = 2,2';6,2'-terpyridine). The ligands and complexes were characterized by their NMR and IR spectra, as well as an X-ray structure determination of [Ru(1)(4-CH3-py)2](PF6)2. Electrochemical analysis indicated metal-based oxidation and ligand-based reduction that was consistent with results from electronic absorption spectra. The complexes [Ru(1)(4-R-py)2](PF6)2 were sensitive to the 4-substituent on the axial pyridine: electron donor groups facilitated the oxidation while electron-withdrawing groups impeded it.  相似文献   

20.
Two new star-shaped ligands with a 1,3,5-triphenylbenzene core, tmpb (1,3,5-tris[p-2-(2'-pyridyl)benzimidazolylphenyl]benzene), and a 2,4,6-tris(p-biphenyl)-1,3,5-triazine core, tmbt (2,4,6-tris[p-2-(2'-pyridyl)benzimidazolylbiphenyl]-1,3,5-triazine), have been synthesized. Their corresponding trinuclear Ru(II) complexes [Ru3(tmpb)(bpy)6](PF6)6 (3) and [Ru3(tmpt)(bpy)6](PF6)6 (4) have been obtained. Two dinuclear linear Ru(II) complexes with previously reported ligands bmb (1,4-bis[2-(2'-pyridyl)benzimidazolyl]benzene) and bmbp (4,4'-bis[2-(2'-pyridyl)benzimidazolyl]biphenyl) and formulae [Ru2(bmb)(bpy)4](PF6)4 (1) and [Ru2(bmbp)(bpy)4](PF6)4 (2) have also been synthesized. Photophysical and electrochemical properties of the new compounds have been investigated. All four compounds display a characteristic metal-to-ligand-charge transfer (MLCT) absorption band and emit a red light when excited at the maximum of the MLCT band with emission maximum at 624, 629, 623 and 625 nm, respectively in neat films at ambient temperature. The emission quantum efficiency of the four complexes in neat films was determined to be 0.15, 0.17, 0.04 and 0.05, respectively. Light emitting devices based on these four compounds were fabricated by spin-casting the compound as a neat film to an ITO substrate, followed by the deposition of an aluminium metal layer. All devices emit a deep red light and the device behavior resembles that of a light emitting electrochemical cell. The EL maximum of the devices 1, 2, 3, and 4 is at 637, 657, 678, and 655 nm, respectively. All four devices have a fast response time when a sufficiently high voltage is applied. The device based on 2 is the brightest with a maximum luminance of 133 cd m(-2) at 7 V. The performance of devices based on 1, 2, and 4 is in general much more efficient than the device based on [Ru(bpy)3](PF6)2, which was fabricated and evaluated under the same experimental conditions as for the devices based on 1-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号