首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Abstract— The photoreactivity of dictamnine, a furoquinoline alkaloid, towards different synthetic DNAs has been studied. The ratio of the photobinding of [3H]-dictamnine to poly(dA-dT) poly(dA-dT): poly(dG-dC) poly(dG-dC): poly(dA-dU) poly(dA-dU): poly(dA) poly(dT), in relation to that of calf thymus DNA, is 18:1:0.5:0.3. Prior treatment of calf thymus DNA with dictamnine in light inhibits the subsequent incorporation of 8-methoxypsoralen (8-MOP). These results suggest that the sites in DNA for the photobinding of dictamnine are probably identical with those for monoad-ducts of 8-MOP. Furthermore, the template activity of photomodified DNA in the RNA polymerase reaction is considerably inhibited for poly(dA-dT)poly(dA-dT), to a lesser extent for calf thymus DNA, but almost not affected for the linear copolymer, poly(dA)-poly(dT).  相似文献   

2.
Spectroscopic study of the interaction of pazelliptine with nucleic acids   总被引:1,自引:0,他引:1  
The antitumor drug pazelliptine (PZE) binds to natural and synthetic DNA sequences at 100 mM NaCl, pH 7.0, as deduced from the absorption and fluorescence data. Scatchard plots constructed from the results obtained with poly(dG-dC)-poly(dG-dC) give binding constants of base pairs in the range (2–6) × 105 M−1. The modifications in the absorption and fluorescence spectra observed when PZE binds to various polynucleotides, namely poly(dA-dT)-poly(dA-dT), poly(dA)-poly(dT), poly(dG-dC)-poly(dG-dC) and calf thymus DNA. reveal a change in the protonation state of the drug upon binding, increasing the apparent pKa of its 9-N nitrogen atom. The PZE excited state properties serve as a sensitive probe to distinguish between homo and hetero A-T sites as well as between AT and GC sites. Fluorescence studies reveal that energy transfer occurs from polynucleotide bases to the bound PZE chromophore, a result consistent with an intercalative mode of binding of the drug to DNA. The emission is enhanced when PZE is bound to A-T base pairs ( 30% increase of φF) whereas it is quenched in the vicinity of G-C base pairs ( 90% decrease of φF). Furthermore, the fluorescence spectrum obtained with calf thymus DNA is hardly distinguishable from that obtained with poly(dG-dC)-polu(dG-dC), suggesting a binding of PZE to G-C rich regions.  相似文献   

3.
Base specificity and enantioselectivity for the DNA binding of [Fe(phen)2(dppz)]2+ (phen=1,10-phenanthroline and dppz=dipyrido[3,2-a:2',3'-c]phenazine) have been studied by determining the equilibrium binding constant (Kb) of the iron(II) complex to calf thymus DNA (ct-DNA), poly[(dA-dT)2], poly[(dG-dC)2] and poly[(dI-dC)2] using spectrophotometric titration and by monitoring the CD spectral profile of the iron(II) complex in the presence and absence of different types of DNA using circular dichroism (CD) spectroscopy, respectively. It has been shown that [Fe(phen)2(dppz)]2+ prefers to intercalate into the A-T and I-C sequences of poly[(dA-dT)2] and poly[(dI-dC)2] rather than into the G-C sequences of poly[(dG-dC)2] or into the base pairs of ct-DNA. In contrast to previous reports, it is a surprising observation that the enantioselectivity of the DNA binding for [Fe(phen)2(dppz)]2+ is base-dependent in nature. The Delta-enantiomer of [Fe(phen)2(dppz)]2+ is preferentially intercalated into the base pairs of poly[(dG-dC)2] or ct-DNA as indicated by its CD spectral profiles. On the other hand, the Lambda-enantiomer of [Fe(phen)2(dppz)]2+ is favorably intercalated into poly[(dA-dT)2] or poly[(dI-dC)2] as suggested by the opposite CD spectral profile. This preferential binding of Lambda-[Fe(phen)2(dppz)]2+)for the A-T sequence may be attributed to the fact that the binding site for the A-T sequence is relatively facile and thus the steric effect caused by the ancillary (non-intercalated) phen ligands is alleviated. The degree of enantioselectivity represented by inversion constants (Kinv) decreases as the salt concentration in the solution increases, indicating that electrostatic interaction is also operating in the ct-DNA-binding events of the iron (II) complex.  相似文献   

4.
A thermodynamic and kinetic study on the mode of binding of 9-amino-6-chloro-2-methoxi-acridine (ACMA) to poly(dA-dT)·poly(dA-dT) and poly(dG-dC)·poly(dG-dC) has been undertaken at pH = 7.0 and I = 0.1 M. The spectrophotometric, kinetic (T-jump), circular dichroism, viscometric and calorimetric information gathered point to formation of a fully intercalated ACMA complex with poly(dA-dT)·poly(dA-dT) and another one only partially intercalated (7%) with poly(dG-dC)·poly(dG-dC). The ACMA affinity with the A-T bases was higher than with the G-C bases. The two polynucleotide sequences give rise to external complexes when the ACMA concentration is raised, namely, the electrostatic complex poly(dA-dT)·poly(dA-dT)-ACMA and the major groove binding complex poly(dG-dC)·poly(dG-dC)-ACMA. A considerable quenching effect of the ACMA fluorescence is observed with poly(dA-dT)·poly(dA-dT), ascribable to face-to-face location in the intercalated A-T-ACMA base-pairs. The even stronger effect observed in the presence of poly(dG-dC)·poly(dG-dC) is related to the guanine residue from on- and off-slot ACMA positions.  相似文献   

5.
The binding properties of two anthracene derivatives with calf thymus DNA (CT DNA), poly(dA-dT), and poly(dG) x poly(dC) are reported. One contained bulky, cyclic cationic substituents at the 9 and 10 positions, and the other carried acylic, branched, cationic substituents. Binding of the probes to the DNA was examined by calorimetry, spectroscopy and helix melting studies. The cyclic derivative indicated exothermic binding, strong hypochromism, bathochromism, positive induced circular dichroism (CD, 300-400 nm), significant unwinding of the helix, large increases in the helix melting temperature, strong but negative linear dichroism (LD, 300-400 nm) and considerable stabilization of the helix. In contrast, the acyclic analog indicated thermoneutral binding, smaller hypochromism, no bathochromism, very weak induced CD, and no change in the helix melting temperature with any of the DNA polymers. A sharp distinction between the binding properties of the two probes is indicated, and both have intrinsic binding constants of approximately 10(6) M(-1) for the three polymers. However, when the ionic strength of the medium was lowered (10 mM NaCl), the absorption as well as CD spectral changes associated with the binding of the acyclic derivative corresponded with those of the cyclic derivative. The acyclic derivative showed large preference (10-fold) for poly(dG) x poly(dC) over poly(dA-dT), whereas the cyclic analog showed no preference. The characteristic spectroscopic signatures of the two distinct binding modes of these probes will be helpful in deciphering the interaction of other anthracene derivatives with DNA.  相似文献   

6.
The binding interactions of three naphthalimide derivatives with heteropoly nucleic acids have been evaluated using fluorescence, absorption and circular dichroism spectroscopies. Mono- and bifunctionalized naphthalimides exhibit sequence-dependent variations in their affinity toward DNA. The heteropoly nucleic acids, [Poly(dA-dT)]2 and [Poly(dG-dC)]2, as well as calf thymus (CT) DNA, were used to understand the factors that govern binding strength and selectivity. Sequence selectivity was addressed by determining the binding constants as a function of polynucleotide composition according to the noncooperative McGhee-von Hippel binding model. Binding affinities toward [poly(dA-dT)](2) were the largest for spermine-substituted naphthalimides (Kb = 2-6 x 10(6) M(-1)). The association constants for complex formation between the cationic naphthalimides and [poly(dG-dC)]2 or CT DNA (58% A-T content) were 2-500 times smaller, depending on the naphthalimide-polynucleotide pair. The binding modes were also assessed using a combination of induced circular dichroism and salt effects to determine whether the naphthalimides associate with DNA through intercalative, electrostatic or groove-binding. The results show that the monofunctionalized spermine and pyridinium-substituted naphthalimides associate with DNA through electrostatic interactions. In contrast, intercalative interactions are predominant in the complex formed between the bifunctionalized spermine compound and all of the polynucleotides.  相似文献   

7.
Yongjun Chu 《Tetrahedron》2006,62(23):5536-5548
Threading polyintercalation has been demonstrated as a unique DNA binding mode in which a polyintercalating moiety threads back and forth through the DNA double helix. This binding topology necessitates linkers residing in both the minor and major grooves in an alternating fashion. In the present work, two novel, rigid, cis and trans oriented spiro-cyclic linkers were synthesized as potential groove binding elements in the context of threading bis-intercalation. Analysis of dissociation kinetics indicated that the cis oriented dimer has dramatically slower dissociation from poly(dGdC) and calf thymus (CT) DNA compared to the trans oriented dimer and a linear dimer control.  相似文献   

8.
Binding of the phenothaizinium dye thionine with four sequence specific deoxyribopolynucleotides, poly(dG-dC).poly(dG-dC), poly(dG).poly(dC), poly(dA-dT).poly(dA-dT), and poly(dA).poly(dT) has been investigated by means of thermal helix melting, isothermal titration calorimetry, and differential scanning calorimetry experiments. The binding affinity values evaluated from isothermal titration calorimetry suggests that thionine exhibits the highest binding affinity to poly(dG-dC).poly(dG-dC). The binding to poly(dG-dC).poly(dG-dC), poly(dA-dT).poly(dA-dT), and poly(dG).poly(dC) is exothermic and favoured by negative enthalpy changes while binding to poly(dA).poly(dT) is endothermic and anomalous. The values of heat capacity changes of the interaction are negative and in the range (?0.4 to ?0.5) kJ · K?1 · mol?1. The binding is characterized by strong stabilization of the polynucleotides against thermal strand separation. The binding affinity values derived from thermal melting data are in excellent agreement with those obtained from isothermal titration calorimetry data. Insights into the energetic aspects and guanine–cytosine selectivity of the DNA interaction of thionine have been obtained from these studies.  相似文献   

9.
The Raman and fluorescence spectroscopic properties of water‐soluble oxo‐titanium(IV) mesotetrakis (1‐methyl pyridium‐4‐yl) porphyrin (O=Ti(TMPyP)4+) bound with calf thymus DNA and artificial DNAs such as double stranded poly[d(A‐T)2] and poly[d(G‐C)2] have been investigated on the single DNA molecule basis by AFM‐correlated confocal scanning microscope (CSM)‐coupled Raman and fluorescence spectroscopic techniques as well as the ensemble‐averaged spectroscopy. The ensemble‐averaged spectroscopic studies imply that the porphyrin interacts with DNA in different groove binding patterns depending on the base pairs. AFM‐images of the different DNAs bound with O=Ti(TMPyP)4+ were measured, and their morphologies are found to depend on kind of base pairs interacting with O=Ti(TMPyP)4+. Being correlated with the AFM images, the CSM‐coupled Raman and fluorescence spectral properties of the three different single O=Ti(TMPyP)4+‐DNA complexes were observed to be highly resolved and sensitive to base pair‐dependent axial ligation of Ti‐O bond as compared to the corresponding ensemble‐averaged spectral properties, which affect the groove binding and its strength of the O=Ti(TMPyP)4+ with DNA. The axial ligation was found to be accompanied by vibration structural change of the porphyrin ring, leading to keep the shape of double stranded poly[d(A‐T)2] rigid while poly‐[d(G‐C)2] and calf thymus DNA flexible after binding with the oxo‐titanyl porphyrin. The base pair dependence of the fluorescence decay times of the DNA‐bound porphyrins was also observed, implying that an excited‐state charge transfer takes place in the G‐C rich major groove in calf thymus DNA. These results suggest that binding of O=Ti(TMPyP)4+ is more preferential with the G‐C rich major groove than with the A‐T rich minor groove in calf thymus DNA so that the morphology of DNA is changed.  相似文献   

10.
Ma DL  Che CM  Siu FM  Yang M  Wong KY 《Inorganic chemistry》2007,46(3):740-749
[Ru(tBu2bpy)2(2-appt)](PF6)2 [1.(PF6)2, tBu2bpy = 4,4'-di-tert-butyl-2,2'-bipyridine, 2-appt = 2-amino-4-phenylamino-6-(2-pyridyl)-1,3,5-triazine] and [Re(CO)3(2-appt)Cl] (2) were prepared and characterized by X-ray crystal analysis. The binding of 1.(PF6)2 and 2 to calf thymus DNA (ct DNA) led to increases in the DNA melting temperature (Delta Tm = +12 degrees C), modest hypochromism (29% and 5% of the absorption bands at lambda max = 450 and 376 nm, respectively), and insignificant shifts in the absorption maxima. The binding constants of 1.(PF6)2 and 2 with ct DNA, as determined by absorption titration, are (8.9 +/- 0.5) x 104 and (3.6 +/- 0.1) x 104 dm3 mol-1, respectively. UV-vis absorption titration, DNA melting studies, and competition dialysis using synthetic oligonucleotides [poly(dA-dT)2 and poly(dG-dC)2] revealed that 1.(PF6)2 and 2 exhibit a binding preference for AT sequences. A modeling study on the interaction between 1 or 2 and B-DNA revealed that the minor groove is the most favored binding site and an extensive hydrogen-bonding network is formed. As determined by MTT assays, 1.(PF6)2 and 2 exhibited moderate cytotoxicities toward several human cancer cell lines (KB-3-1, HepG2, and HeLa), as well as a multi-drug-resistant cancer cell line (KB-V-1). According to confocal microscopic and flow cytometric studies, 1.(PF6)2 and 2 induced apoptosis (50-60%) in cancer cells with <5% necrosis detected.  相似文献   

11.
The intercalating antitumoral drug pazelliptine (PZE) is able to photosensitize the formation of single- and double-strand breaks in supercoiled plasmid DNA and selective photocleavage at guanine residues is observed. In order to understand the mechanisms of DNA cleavage mediated by the photoexcited drug, singlet and triplet excited-state processes in PZE complexed with poly(dA-dT)-poly(dA-dT), poly(dG-dC)-poly(dG-dC) and calf thymus DNA have been investigated by means of single photon counting fluorescence decay and transient absorption techniques. For each complex, three different binding sites have been identified, due to the existence of different geometric structures of the drug in the ground state. For one type of binding site, a proton transfer reaction occurs in the singlet excited state whatever the nucleic acid environment. In contrast, the relaxation dynamics for the other two sites are found to depend widely upon the type of polynucleotide in which the drug has been intercalated. From the results of this study, we suggest that the photodynamic action of PZE does not originate from excitation of the drug in the environment of G-C base pairs but is initiated from its triplet state that reacts by electron transfer with the adenine bases. The specificity of cleavage could be the result of subsequent reactions leading to guanine oxidation.  相似文献   

12.
Sugar-oligoamides have been designed and synthesized as structurally simple carbohydrate-based ligands to study carbohydrate-DNA interactions. The general design of the ligands 1-3 has been done as to favor the bound conformation of Distamycin-type gamma-linked covalent dimers which is a hairpin conformation. Indeed, NMR analysis of the sugar-oligoamides in the free state has indicated the presence of a percentage of a hairpin conformation in aqueous solution. The DNA binding activity of compounds 1-3 was confirmed by calf thymus DNA (ct-DNA) NMR titration. Interestingly, the binding of the different sugar-oligoamides seems to be modulated by the sugar configuration. Semiquantitative structural information about the DNA ligand complexes has been derived from NMR data. A competition experiment with Netropsin suggested that the sugar-oligoamide 3 bind to DNA in the minor groove. The NMR titrations of 1-3 with poly(dA-dT) and poly(dG-dC) suggested preferential binding to the ATAT sequence. TR-NOE NMR experiments for the sugar-oligoamide 3-ct-DNA complex both in D(2)O and H(2)O have confirmed the complex formation and given information on the conformation of the ligand in the bound state. The data confirmed that the sugar-oligoamide ligand is a hairpin in the bound state. Even more relevant to our goal, structural information on the conformation around the N-glycosidic linkage has been accessed. Thus, the sugar asymmetric centers pointing to the NH-amide and N-methyl rims of the molecule have been characterized.  相似文献   

13.
利用模板法在氧化铟锡(ITO)电极表面制备了三维有序多孔结构的金掺杂纳米Ti O2薄膜修饰电极(3DOM GTD/ITO),并在此修饰电极上成功固定小牛胸腺DNA(ct DNA),从而构建了一种新型的DNA生物传感器(DNA/3DOM GTD/ITO),并通过透射电镜(TEM)、扫描电镜(SEM)对修饰电极的表面形貌进行表征。采用电化学交流阻抗(EIS)法研究了ct DNA在3DOM GTD/ITO修饰电极表面的固定情况,结果表明,ct DNA已被成功地固定在3DOM GTD/ITO修饰电极表面。采用循环伏安法、微分脉冲伏安法等电化学方法研究了抗肿瘤药物槲皮素(Qu)在3DOM GTD/ITO修饰电极表面的电化学性质及与ct DNA的相互作用。结果表明,Qu在3DOM GTD/ITO修饰电极表面有1对准可逆的氧化还原峰,其氧化还原反应为2电子和2质子的转移过程。Qu可与固定在修饰电极上的ct DNA发生较强的结合作用,其结合常数(K)为3.61×106L/mol。循环伏安实验、紫外-可见吸收光谱、分子荧光光谱、圆二色性光谱均表明Qu与ct DNA之间的相互作用模式为嵌插作用。Qu与ct DNA的碱基结合具有序列选择性,对Qu与聚(d G-d C)及聚(d A-d T)的结合常数进行计算,得到结合常数比K(d G-d C)/K(d A-d T)=3.5,表明Qu与ct DNA发生嵌插作用时更倾向于结合在GC富集区域。  相似文献   

14.
Raman and surface-enhanced Raman spectra of new DNA/RNA-binding compounds consisting of three imidazole (Im) and three pyridine (Py) rings connected by tripodal polyaminomethylene linkages were obtained by the near-infrared excitation at 1064 nm. Study of interactions of Im and Py polyamines with single-stranded RNA polynucleotides (poly?A, poly?G, poly?C, poly?U), double-stranded DNA polynucleotides (poly?dAdT-poly?dAdT, poly?dGdC-poly?dGdC) and calf thymus DNA (ct-DNA) by surface-enhanced Raman spectroscopy (SERS) reveals unambiguous enhancement of the Raman scattering from the small molecules as well as appearance of new bands in spectra associated mainly with nucleobases. The SERS experiments point toward comparable interactions of Im and Py polyamines with single-stranded purine and pyrimidine polynucleotides. Furthermore, SERS experiments with double stranded polynucleotides reveal the base-pair dependent selectivity of Im and Py, whereby interactions within both, major and minor groove are indicated for poly?dAdT-poly?dAdT, at variance to preferred binding of Im and Py to only major groove of poly?dGdC-poly?dGdC. SERS spectra of Im and Py with ct-DNA imply that protonated amino groups of these compounds preferentially interact with N7 atoms (adenine, guanine) while nitrogen in aromatic rings of polyamines might be attracted to C6-NH(2) (adenine), all sites being located at the major groove of the DNA helix. Wavenumber downshift of the imidazole (Im) and pyridine (Py) ring vibrations supports aromatic stacking interactions of imidazole and pyridine aromatic moieties with DNA base-pairs.  相似文献   

15.
The interactions between the stereoisomers of the chiral bis-intercalator [mu-C4(cpdppz)(2)-(phen)(4)Ru(2)](4+) and DNA reveal interesting dynamic discrimination properties. The two enantiomers Delta-Delta and Lambda-Lambda both form very strong complexes with calf thymus DNA with similar thermodynamic affinities. By contrast, they display considerable variations in their binding kinetics. The Delta-Delta enantiomer has higher affinity for calf thymus DNA than for [poly(dA-dT)](2), and the association kinetics of the dimer to DNA, as well as to polynucleotides, requires a multiexponential fitting function. The dissociation reaction, on the other hand, could be described by a single exponential for [poly(dA-dT)](2), whereas two exponentials were required for mixed-sequence DNA. To understand the key mechanistic steps of the reaction, the kinetics was studied at varied salt concentration for different choices of DNA and chirality of the threading complex. The enantiomers were found to have markedly different dissociation rates, the Lambda-Lambda enantiomer dissociating about an order of magnitude faster than the Delta-Delta enantiomer. Also, the salt dependence of the dissociation rate constants differed between the enantiomers, being stronger for the Lambda-Lambda enantiomer than for the Delta-Delta enantiomer. Since the dissociation reaction requires unthreading of bulky parts of the bis-intercalator through the DNA helix, a considerable conformational change of the DNA must be involved, possibly defining the rate-limiting step.  相似文献   

16.
Energetics of the binding of two known classical DNA intercalating molecules, ethidium and sanguinarine with four sequence specific polynucleotides, poly(dG-dC).poly(dG-dC), poly(dG).poly(dC), poly(dA-dT).poly(dA-dT), and poly(dA).poly(dT) have been compared under identical conditions. The binding of both the molecules was characterized by strong stabilization of the polynucleotides against thermal strand separation in optical melting as well as differential scanning calorimetry studies. Isothermal titration calorimetry results revealed that the binding of both sanguinarine and ethidium to poly(dG-dC).poly(dG-dC), poly(dA-dT).poly(dA-dT), and poly(dG).poly(dC) was exothermic and favoured by negative enthalpy changes. On the other hand, the binding of both molecules to poly(dA).poly(dT) was endothermic and entropy driven. The binding affinity values obtained from isothermal titration calorimetry data was in close proximity to that derived from thermal melting data. The heat capacity changes obtained from temperature dependence of the enthalpy change gave negative values in the range (?0.4 to 1.25) kJ · mol?1 · K?1 for the binding of ethidium and sanguinarine to these polynucleotides. The variations in the values indicate important differences in the formation of the complexes. New insights into the energetics and specificity aspects of interaction of these molecules to DNA have emerged from these studies.  相似文献   

17.
In the presence of double helical polynucleotides (sodium poly(dA-dT).poly(dA-dT) or calf thymus DNA), the efficiency of oxidative or reductive electron transfer between photoexcited ruthenium(II) chelates Ru(tap)2(hat)2+ or Ru(phen)2+(3) (where tap = 1,4,5,8-tetraazaphenanthrene, hat = 1,4,5,8,9,12-hexaazatriphenylene, and phen = 1,10-phenanthroline) and appropriate cationic quenchers (ethidium, Ru(NH3)3+(6), methyl viologen, or M(phen)3+(3), where M = Co, Rh, Cr) increases 1-2 orders of magnitude compared to the efficiency of the same quenching in microhomogeneous aqueous medium (kq = 0.3-1.8 x 10(9) M-1 s-1). The enhancement is more pronounced when the binding constant of the quencher (10(3) less than Kb less than 10(6) M-1) is large. Similar trends are found when the biopolymers are replaced by sodium poly(styrenesulfonate) (PSS). The accelerated electron transfer process is proposed to be due mainly to the effect of accumulation of the reagents in the electrostatic field of the polymer; if corrections for this effect are introduced (e.g. ratioing [quencher]/[polynucleotide]), the reaction rate becomes essentially independent of the polymer concentration. Based upon a model for electron transfer reaction of the complexes within a small cylindrical interface around the DNA helix, calculations of the bimolecular electron transfer rate constants are computed to be 10(3) times smaller when the reactants are bound to the double-stranded polynucleotides and decreased mobility of the cationic species is apparent. The effect is less pronounced if a simpler polyelectrolyte (PSS) is employed. Emission lifetimes of the Ru(II) polypyridyls bound to the DNA (0.32-2 microseconds, double exponential decays) are discussed as well.  相似文献   

18.
A temperature-dependent interaction of neutral red with calf thymus DNA   总被引:1,自引:0,他引:1  
Neutral red (NR) is used as a probe to study the temperature and concentration dependent interaction of a cationic dye with nucleic acid. A temperature-dependent interaction of NR with calf thymus DNA (CT DNA) has been studied by differential pulse voltammetry (DPV), UV-Visible absorption, circular dichroism (CD) and fluorescence spectroscopy. The experimental results of increasing peak current, changes in the UV-Visible absorption and fluorescence spectra of NR and decreasing the induced circular dichroism (ICD) intensity show that (i) the binding mode of NR molecules is changed from intercalating into DNA base pairs to aggregating along the DNA double helix and (ii) the orientation of NR chromophore in DNA double helix is also changed with the temperature.  相似文献   

19.
The present paper describes synthesis and spectroscopic properties of novel cationic meso-tetraphenylporphyrins bearing two (trans) (P2) or three (P3) triphenylphosphonium substituents. The porphyrin aggregation in aqueous solutions is discussed in detail. Porphyrin binding to and self-organization onto long-range assemblies on poly(dA-dT)2 or poly(dG-dC)2 were probed by combination of absorption, fluorescence, circular dichroism (CD), transient and resonance light-scattering (RLS) techniques. The higher hydrophobicity of P2 is manifested by more extensive self-organization. Induced CD and intensive RLS indicate binding to the chiral environment on the nucleic acids exterior and exciton coupling between adjacent porphyrin moieties. The CD spectra of P2 on poly(dG-dC), and poly(dA-dT)2 suggest that the binding geometry is essentially independent of the base sequence. The fluorescence lifetime of about 4 ns was attributed to the long-range assembly. In the case of P3 the distinctly different CD spectra induced by GC or AT base-pair regions reveal that the number of the substituents determines how closely the porphyrin can approach the specific electronic environment on the nucleic acid exterior. The fluorescence lifetime of the P3 assembly is about 2 ns.  相似文献   

20.
Stemp ED  Barton JK 《Inorganic chemistry》2000,39(17):3868-3874
Electron transfer from a protein to oxidatively damaged DNA, specifically from ferrocytochrome c to the guanine radical, was examined using the flash-quench technique. Ru(phen)2dppz2+ (dppz = dipyridophenazine) was employed as the photosensitive intercalator, and ferricytochrome c (Fe3+ cyt c), as the oxidative quencher. Using transient absorption and time-resolved luminescence spectroscopies, we examined the electron-transfer reactions following photoexcitation of the ruthenium complex in the presence of poly(dA-dT) or poly(dG-dC). The luminescence-quenching titrations of excited Ru(phen)2dppz2+ by Fe3+ cyt c are nearly identical for the two DNA polymers. However, the spectral characteristics of the long-lived transient produced by the quenching depend strongly upon the DNA. For poly(dA-dT), the transient has a spectrum consistent with formation of a [Ru(phen)2dppz3+, Fe2+ cyt c] intermediate, indicating that the system regenerates itself via electron transfer from the protein to the Ru(III) metallointercalator for this polymer. For poly(dG-dC), however, the transient has the characteristics expected for an intermediate of Fe2+ cyt c and the neutral guanine radical. The characteristics of the transient formed with the GC polymer are consistent with rapid oxidation of guanine by the Ru(III) complex, followed by slow electron transfer from Fe2+ cyt c to the guanine radical. These experiments show that electron holes on DNA can be repaired by protein and demonstrate how the flash-quench technique can be used generally in studying electron transfer from proteins to guanine radicals in duplex DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号