首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A number of alkyltin(IV) paratoluenesulfonates, RnSn(OSO2C6H4CH3‐4)4?n (n = 2, 3; R = C2H5, n‐C3H7, n‐C4H9), have been prepared and IR spectra and solution NMR (1H, 13C, 119Sn) are reported for these compounds, including (n‐C4H9)2Sn(OSO2X)2 (X = CH3 and CF3), the NMR spectra of which have not been reported previously. From the chemical shift δ(119Sn) and the coupling constants 1J(13C, 119Sn) and 2J(1H, 119Sn), the coordination of the tin atom and the geometry of its coordination sphere in solutions of these compounds is suggested. IR spectra of the compounds are very similar to that observed for the paratoluenesulfonate anion in its sodium salt. The studies indicate that diorganotin(IV) paratoluenesulfonates, and the previously reported compounds (n‐C4H9)2Sn(OSO2X)2 (X = CH3 and CF3), contain bridging SO3X groups that yield polymeric structures with hexacoordination around tin and contain non‐linear C? Sn? C bonds. In triorganotin(IV) sulfonates, pentacoordination for tin with a planar SnC3 skeleton and bidentate bridging paratoluenesulfonate anionic groups are suggested by IR and NMR spectral studies. The X‐ray structure shows [(n‐C4H9)2Sn(OSO2C6H4CH3‐4)2·2H2O] to be monomeric containing six‐coordinate tin and crystallizes from methanol–chloroform in monoclinic space group C2/c. The Sn? O (paratoluenesulfonate) bond distance (2.26(2) Å) is indicative of a relatively high degree of ionic character in the metal–anion bonds. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
ω-Haloalkyltin trihalides, X(CH2)nSnX3 (n ≧ 3; X = halogen) can readily be prepared in high yields by the direct reaction of stannous halides with α,ω-dihaloalkanes, catalysed by trialkylantimony compounds. The compounds are versatile starting materials for the synthesis of a variety of ω-functionallysubstituted organotin compounds R3-mXmSn(CH2)n Y (R = alkyl, phenyl; m = 0-3; X = Cl, Br, O; Y = Br, NMe2, NEt2, COOH, CHOHR, R3Sn). 1H-NMR spectral data for a series of such compounds are presented. The trends observed in the chemical shifts and the 119Sn—methyl proton coupling constants of Me3-m BrmSn(CH2)nBr (m = 0-3; n = 3-5) are discussed in terms of inductive effects. Intramolecular coordination between the ω-bromine atom and tin could not be demonstrated.  相似文献   

3.
The 13C and 119Sn NMR spectra of 33 organotin compounds of the type RSnMenCl3 ? n and related types are discussed. The substituent effects of the groups SnMe3, SnMe2Cl, SnMeCl2 and SnCl3 (and of some related groups) on the carbon chemical shifts in the alkyl group R have been determined; the SnMe3 group causes a small upfield shift of the carbon attached to it, while the other groups cause downfield shifts. The shifts show a monotonic change on replacing methyl groups in Me3Sn by chlorine atoms. The effects on carbons further removed from the tin atom are discussed. Variation in R causes little change in nJ(Sn? C) or δ(119Sn).  相似文献   

4.
The reaction of 4,4′‐bipy with dimethyltin(IV) chloride iso‐thiocyanate affords the one‐dimensional (1D) coordination polymer, [Me2Sn(NCS)Cl·(4,4′‐bipy)]n ( 1 ), whereas reaction of dimethyltin(IV) dichloride with sodium pyrazine‐2‐carboxylate in the presence of potassium iso‐thiocyanate affords the two‐dimensional (2D) coordination polymer, {[Me2Sn(C4H3N2COO)2]2 [Me2Sn(NCS)2]}n ( 2 ). Both coordination polymers were characterized by elemental analysis and infrared spectroscopy in addition to 1H and 13C NMR spectroscopy of the soluble coordination polymer ( 1 ). A single‐crystal structure determination showed that the asymmetric unit in 1 contains Me2Sn(NCS)Cl and 4,4′‐bipy moieties and a 1D infinite rigid chain structure forms through bridging of the 4,4′‐bipy ligand between tin atoms and the geometry around the tin atom is a distorted octahedral. Coordination polymer 2 contains two distinct tin atom geometrics in which one tin atom is seven coordinate, and the other is six coordinate. The two tin atom environments are best described as a pentagonal bipyramidal in the former and distorted octahedral in the latter where the carboxylate groups bridge the two tin atoms and construct a 2D‐coordination polymer. The 119Sn NMR spectroscopy indicates the octahedral geometry of 1 retains in solution. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 22:699–706, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/.20736  相似文献   

5.
Two series of organotin(IV) complexes with Sn–S bonds on the base of 2,6‐di‐tert‐butyl‐4‐mercaptophenol ( L 1 SH ) of formulae Me2Sn(L1S)2 ( 1 ); Et2Sn(L1S)2 ( 2 ); Bu2Sn(L1S)2 ( 3 ); Ph 2 Sn(L1S)2 ( 4 ); (L1)2Sn(L1S)2 ( 5 ); Me3Sn(L1S) ( 6 ); Ph3Sn(L1S) ( 7 ) (L1 = 3,5‐di‐tert‐butyl‐4‐hydroxyphenyl), together with the new ones [Me3SnCl(L2)] ( 8 ), [Me2SnCl2(L2)2] ( 9 ) ( L 2  = 2‐(N‐3,5‐di‐tert‐butyl‐4‐hydroxyphenyl)‐iminomethylphenol) were used to study their antioxidant and cytotoxic activity. Novel complexes 8 , 9 of MenSnCl4 ? n (n = 3, 2) with Schiff base were synthesized and characterized by 1H, 13C NMR, IR and elemental analysis. The crystal structures of compounds 8 and 9 were determined by X‐ray diffraction analysis. The distorted tetrahedral geometry around the Sn center in the monocrystals of 8 was revealed, the Schiff base is coordinated to the tin(IV) atom by electrostatic interaction and formation of short contact Sn–O 2.805 Å. In the case of complex 9 the distorted octahedron coordination of Sn atom is formed. The antioxidant activity of compounds as radical scavengers and reducing agents was proved spectrophotometrically in tests with stable radical DPPH, reduction of Cu2+ (CUPRAC method) and interaction with superoxide radical‐anion. Moreover, compounds have been screened for in vitro cytotoxicity on eight human cancer cell lines. A high activity against all cell lines with IC50 values 60–160 nM was determined for the triphenyltin complex 7 , while the introduction of Schiff base decreased the cytotoxicity of the complexes. The influence on mitochondrial potential and mitochondrial permeability for the compounds 8 and 9 has been studied. It is shown that studied complexes depolarize the mitochondria but don't influence the calcium‐induced mitochondrial permeability transition.  相似文献   

6.
Polysulfonylamines. CXVI. Destructive Complexation of the Dimeric Diorganyltin(IV) Hydroxide [Me2Sn(A)(μ‐OH)]2 (HA = Benzene‐1,2‐disulfonimide): Formation and Structures of the Mononuclear Complexes [Me2Sn(A)2(OPPh3)2] and [Me2Sn(phen)2]2⊕ · 2 A · MeCN Destructive complexation of the dimeric hydroxide [Me2Sn(A)(μ‐OH)]2, where A is deprotonated benzene‐1,2‐disulfonimide, with two equivalents of triphenylphosphine oxide or 1,10‐phenanthroline in hot MeCN produced, along with Me2SnO and water, the novel coordination compounds [Me2Sn(A)2(OPPh3)2] ( 3 , triclinic, space group P 1) and [Me2Sn(phen)2]2⊕ · 2 A · MeCN ( 4 , monoclinic, P21/c). In the uncharged all‐trans octahedral complex 3 , the heteroligands are unidentally O‐bonded to the tin atom, which resides on a crystallographic centre of inversion [Sn–O(S) 227.4(2), Sn–O(P) 219.6(2) pm, cis‐angles in the range 87–93°; anionic ligand partially disordered over two equally populated sites for N, two S and non‐coordinating O atoms]. The cation occurring in the crystal of 4 has a severely distorted cis‐octahedral C2N4 coordination geometry around tin and represents the first authenticated example of a dicationic tin(IV) dichelate [R2Sn(L–L′)2]2⊕ to adopt a cis‐structure [C–Sn–C 108.44(11)°]. The five‐membered chelate rings are nearly planar, with similar bite angles of the bidentate ligands, but unsymmetric Sn–N bond lengths, each of the longer bonds being trans to a methyl group [ring 1: N–Sn–N 71.24(7)°, Sn–N 226.81(19) and 237.5(2) pm; ring 2: 71.63(7)°, 228.0(2) and 232.20(19) pm]. In both structures, the bicyclic and effectively CS symmetric A ions have their five‐membered rings distorted into an envelope conformation, with N atoms displaced by 28–43 pm from the corresponding C6S2 mean plane.  相似文献   

7.
Evidence is presented for the cleavage of the tintin bond in hexamethylditin in 1,2-dimethoxyethane solution by Group IIIA derivatives of the form LiMR4(M = B, Al, Ga, Tl; R = H, CH3). In all cases where reaction occurs Me3SnR is produced.The formation of SnM bonded intermediates in these reactions is supported by the observation of 1H NMR spectra showing both tin and thallium satellites compatible with the formation of Li[(Me3Sn)nTlMe4-n] derivatives in the reaction between Sn2Me6 and LiTlMe4.The overall rate of reactivity of LiMR4 with Sn2Me6 decreased as follows: LiTlMe4 > LiAlH4 ? LiGaMe4 > LiAlMe4 ? LiBH4 and LiBMe4. Neither LiBMe4 or LiBH4 reacted with Sn2Me6 even after heating for two weeks at 80°.  相似文献   

8.
An analytical method for determining the presence in air of volatile forms (e.g. chlorides) of tributyltin (TBT) and that of methylbutyltins Me nBu(4?n)Sn (n = 1–3) was developed and used to establish whether dredged harbour sediments contaminated with TBT served as sources of air pollution with respect to organotin compounds. The method was based on active sampling of the air being analysed and sorption of analytes onto Poropak‐N. Sorbed methylbutyltins were extracted with dichloromethane and analysed by gas chromatography using flame photometric detection. Other butyltins were converted into butyltin hydrides prior to analysis by gas chromatography. It was shown that TBT‐contaminated sediments from Marsamxett Harbour, Malta, placed in 0.5 l chambers through which air was displaced by continuous pumping for 11 days released mainly methylbutyltins, with concentrations (as tin) reaching maximum 48 h mean values of 8.7 (Me3BuSn), 22.1 (Me2Bu2Sn) and 93.0 ng m?3(MeBu3Sn) being measured. Other volatile forms of TBT, dibutyltin and monobutyltin were detected in the headspace air, but very infrequently and at much lower tin concentrations (<2 ng m?3). It was also shown that methylbutyltins dissolved in sea‐water ([Sn] = 0.2 to 400 ng l?1) were very difficult to exsolve from this medium, even on prolonged evaporation of the solutions using mechanical agitation and active ventilation. The results suggest that emission of methylbutyltins from contaminated sediments probably occurs only from the surface of the material. The environmental implications of these findings in the management of TBT‐polluted harbour sediments are discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Starting from the equilibrium mixture of cis- and trans-1-bromo-1-propene, isomeric mixtures of compounds Men Sn(CH=GHMe)4-n (n = 0–3) have been prepared and studied. While proton NMR only allows distinction between the methyltin signals of the various isomers (except where n = 3), the 13C spectra show separate signals for almost all isomeric carbons even when n = 0. In the 119Sn spectra the signals due to the various isomers are separated by ca. 20 ppm for a given value of n; the peak areas can be used to estimate the proportions of cis- and trans-propenyl residues present in the mixtures. Addition of 2-bromo-propene to the starting 1-bromo-1-propenes leads to the formation of further isomers, which can in all cases be observed and identified in the 119Sn spectra; 119Sn shifts can be calculated using the shifts for the Me3SnC3H5 isomers as increments.  相似文献   

10.
The tetravalent germanium and tin compounds of the general formulae Ph*EX3 (Ph* = C6H3Trip‐2,6, Trip = C6H2iPr3‐2,4,6; E = Sn, X = Cl ( 1a ), Br ( 1b ); E = Ge, X = Cl ( 2 )) are synthesized by reaction of Ph*Li·OEt2 with EX4. The subsequent reaction of 1a , b with LiP(SiMe3)2 leads to Ph*EP(SiMe3)2 (E = Sn ( 3 ), Ge ( 4 )) and the diphosphane (Me3Si)2PP(SiMe3)2 by a redox reaction. In an alternative approach 3 and 4 are synthesized by using the corresponding divalent compounds Ph*ECl (E = Ge, Sn) in the reaction with LiP(SiMe3)2. The reactivity of Ph*SnCl is extensively investigated to give with LiP(H)Trip a tin(II)‐phosphane derivative Ph*SnP(H)Trip ( 6 ) and with Li2PTrip a proposed product [Ph*SnPTrip] ( 7 ) with multiple bonding between tin and phosphorus. The latter feature is confirmed by DFT calculations on a model compound [PhSnPPh]. The reaction with Li[H2PW(CO)5] gives the oxo‐bridged tin compound [Ph*Sn{W(CO)5}(μ‐O)2SnPh*] ( 8 ) as the only isolable product. However, the existence of 8 as the bis‐hydroxo derivative [Ph*Sn{W(CO)5}(μ‐OH)2SnPh*] ( 8a ) is also possible. The SnIV derivatives Ph*Sn(OSiMe3)2Cl ( 9 ) and [Ph*Sn(μ‐O)Cl]2 ( 10 ) are obtained by the oxidation of Ph*SnCl with bis(trimethylsilyl)peroxide and with Me3NO, respectively. Besides the spectroscopic characterization of the isolated products compounds 1a , 2 , 3 , 4 , 8 , and 10 are additionally characterized by X‐ray diffraction analysis.  相似文献   

11.
The series of ,-diiodopermethylpolysilanes, I(SiMe 2) n I, (n=4–6) andX(SiMe 2)4 X, (X=Cl, Br) has been prepared by the action of halogen on the corresponding cyclic compounds (SiMe 2) n . The mass spectra, NMR-, IR- andRaman-spectra of these compounds have been recorded.
Herrn Prof. Dr.Josef Schurz zum 60. Geburtstag gewidmet.  相似文献   

12.
Herein, we report the syntheses of silicon‐ and tin‐containing open‐chain and eight‐membered‐ring compounds Me2Si(CH2SnMe2X)2 ( 2 , X=Me; 3 , X=Cl; 4 , X=F), CH2(SnMe2CH2I)2 ( 7 ), CH2(SnMe2CH2Cl)2 ( 8 ), cyclo‐Me2Sn(CH2SnMe2CH2)2SiMe2 ( 6 ), cyclo‐(Me2SnCH2)4 ( 9 ), cyclo‐Me(2?n)XnSn(CH2SiMe2CH2)2SnXnMe(2?n) ( 5 , n=0; 10 , n = 1, X= Cl; 11 , n=1, X= F; 12 , n=2, X= Cl), and the chloride and fluoride complexes NEt4[cyclo‐ Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?F] ( 13 ), PPh4[cyclo‐Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?Cl] ( 14 ), NEt4[cyclo‐Me(F)Sn(CH2SiMe2CH2)2Sn(F)Me?F] ( 15 ), [NEt4]2[cyclo‐Cl2Sn(CH2SiMe2CH2)2SnCl2?2 Cl] ( 16 ), M[Me2Si(CH2Sn(Cl)Me2)2?Cl] ( 17 a , M=PPh4; 17 b , M=NEt4), NEt4[Me2Si(CH2Sn(Cl)Me2)2?F] ( 18 ), NEt4[Me2Si(CH2Sn(F)Me2)2?F] ( 19 ), and PPh4[Me2Si(CH2Sn(Cl)Me2)2?Br] ( 20 ). The compounds were characterised by electrospray mass‐spectrometric, IR and 1H, 13C, 19F, 29Si, and 119Sn NMR spectroscopic analysis, and, except for 15 and 18 , single‐crystal X‐ray diffraction studies.  相似文献   

13.
The Reactions of cyclo ‐Tristannazanes, [(CH3)2Sn–N(R)]3, with the Trimethyl Derivatives of Aluminium, Gallium, and Indium The cyclo‐tristannazanes [Me2Sn–N(R)]3 (with R = Me, nPr, iPr, iBu) have been prepared from Me2SnCl2 and LiN(H)R in a 1 : 2 molar ratio. With MMe3 (M = Al, Ga, In) they form the dimeric dimethylmetal trimethylstannyl(alkyl)amides [Me2M–N(R)SnMe3]2 in good yields. The mass, NMR (1H, 13C, 119Sn), and vibrational spectra are discussed and compared with the spectra of the tristannazanes. Thermolysis of the gallium amidocompounds splits SnMe4 to form methylgallium imido derivatives with cage structures. The crystal structures of selected stannylamido complexes have been determined by X‐ray structure analysis.  相似文献   

14.
Open‐Chain and Cyclic As‐functionalized Stannylarsines: Synthesis, Reactions, and Structure tBu3SnAsH2 ( 1 ) reacts with MeLi to form the lithium compound tBu3SnAsHLi which reacts with tBu2SnCl2 to give the AsH‐functionalized bis(arsino)stannane tBu2Sn(AsHSntBu3)2 ( 2 ). Metallation of diarsadistannetane (tBu2SnAsH)2 ( 3 ) with two equivalents of tBuLi yields the dilithio compound (tBu2SnAsLi)2 which reacts with Me3SiCl or Me3SnCl to give the corresponding As,As′‐bis‐substituted diarsadistannetanes (tBu2SnAsSiMe3)2 ( 4 ) and (tBu2SnAsSnMe3)2 ( 5 ), respectively. The novel compounds are characterized by NMR (1H, 119Sn) and mass spectroscopy, ring compounds 4 and 5 further by X‐ray structure analysis. In the solid state both ring compounds contain molecules with planar tin‐arsenic rings and two trans‐configurated Me3Si‐ or Me3Sn‐ring substituents (space group P21/n (No. 14), Z = 2).  相似文献   

15.
The proton and carbon-13 NMR spectra of thirteen trialkylmetal derivatives of pyridine, several of which were previously unknown, have been recorded and analysed. The proton NMR spectra show variations in proton chemical shifts but not in proton-proton coupling constants when the metal substituent is changed; the ring proton-metal coupling constants nJ(M? H) in the tin and lead derivatives correspond closely with the corresponding proton-proton couplings nJ(H? H) in pyridine. The carbon-13 chemical shifts of the carbons bound to the metal can apparently be correlated with the electron-donating ability of the trialkylmetal group. In the trimethylstannylpyridines the value of 1J(Sn? Cring) varies greatly with the position of the Me3Sn group.  相似文献   

16.
《Polyhedron》2004,23(2-3):445-450
We report the synthesis and structure of arsenic (III) and tin(IV) adducts of the hydrotris(methimazolyl)borate anion (TmMe). Both species are found to be [E(κ3TmMe)2]n+ anions (E=As, n=1; E=Sn, n=2). Comparisons are made between each of these species and the compounds formed with their heavier and larger group partners bismuth and lead. Due to the remarkable flexibility in the soft scorpionate ligand we were unable to form a charge-separated species analogous to that reported by Parkin for the phenyl analogue (TmPh). Attempts to prepare the tin(II) adduct curiously produced the tin(IV) product [Sn(κ3TmMe)2][TmMe]2 even when the reaction was carried out under inert atmospheres.  相似文献   

17.
Reactions of di‐n‐butyltin(IV) oxide with 4′/2′‐nitrobiphenyl‐2‐carboxylic acids in 1 : 1 and 1 : 2 stoichiometry yield complexes [{(n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)}2O]2 ( 1 and 2 ) and (n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)2 ( 3 and 4 ) respectively. These compounds were characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectroscopy. The IR spectra of these compounds indicate the presence of anisobidentate carboxylate groups and non‐linear C? Sn? C bonds. From the chemical shifts δ (119Sn) and the coupling constants 1J(13C, 119Sn), the coordination number of the tin atom and the geometry of its coordination sphere have been suggested. [{(n‐C4H9)2Sn(OCOC12H8NO2?4′)}2O]2 ( 1 ) exhibits a dimeric structure containing distannoxane units with two types of tin atom with essentially identical geometry. To a first approximation, the tin atoms appear to be pentacoordinated with distorted trigonal bipyramidal geometry. However, each type of tin atom is further subjected to a sixth weaker interaction and may be described as having a capped trigonal bipyramidal structure. The diffraction study of the complex (n‐C4H9)2Sn(OCOC12H8NO2?4′)2 ( 3 ) shows a six–coordinate tin in a distorted octahedral frame containing bidentate asymmetric chelating carboxylate groups, with the n‐Bu groups trans to each other. The n‐Bu? Sn? n‐Bu angle is 152.8° and the Sn? O distances are 2.108(4) and 2.493(5) Å. The oxygen atom of the nitro group of the ligand does not participate in bonding to the tin atom in 1 and 3 . Crystals of 1 are triclinic with space group P1 and of that of 3 have orthorhombic space group Pnna. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Silyldiazoalkanes Me3Si(LnM)CN2 (LnM = Me3Si, Me3Ge, Me3Sn, Me3Pb; Me3As, Me3Sb, Me3Bi) have been synthesized by three different routes: (a) reactions of the Me3SiCHN2 with metal amides LnMNR1R2 of Group IVB and VB elements, using Me3SnCl as catalyst; (b) reactions of the in situ prepared organolithium compound Me3SiC(Li)N2 with organometallic chlorides Me3MCl (M = Si, Ge); (c) tincarbon bond cleavage reaction of (Me3Sn)2CN2 with Me3SiN3, affording Me3SnN3, traces of bis(trimethylsilyl)diazomethane (Me3Si)CN2, trimethylsilyl(trimethylstannyl)diazomethane Me3Si(Me3Sn)CN2 and bis(trimethylsilyl)aminoisocyanide (Me3Si)2NNC as the major reaction products. IR and NMR data (1H, 13C, 29Si, 119Sn, 207Pb) of the new heterometal-diazoalkanes are reported and discussed in comparison to relevant compounds of the organometallic diazoalkane series.  相似文献   

19.
Analytical methods have been developed for the quantitative determination of Bu4Sn, Bu3Sn+, Bu2Sn2+, BuSn3+, Me3BuSn, Me2Bu2Sn, MeBu3Sn, MeBuSn2+, Me2BuSn+ and MeBu2Sn+ in water. Organotin compounds are extracted from water with tropolone at 0.1 % in n-pentane, derivatized with n-pentylmagnesium bromide and determined by gas chromatography with flame photometric detection or flame ionization detection. Absolute detection limits are 0.05-0.12 ng and 1.2-13 ng as tin, respectively. The method was applied to the analysis of spiked tap-water containing 0.3-1000 ng cm?3 of each of the organotin compounds.  相似文献   

20.
Several new complexes of organotin(IV) moieties with MCln[meso-tetra(4-sulfonatophenyl)porphine], (R2Sn)2MCln[meso-tetra(4-sulfonatophenyl)-porphinate]s and (R3Sn)4MCln [meso-tetra(4-sulfonatophenyl)porphinate]s, [M = Fe(III), Mn(III): n = 1, R = Me, n-Bu; Ph; M = Sn(IV): n = 2, R = Me, n-Bu] have been synthesized and their solid state configuration investigated by infrared (IR) and Mössbauer spectroscopy, and by 1H and 13C NMR in D2O.The electron density on the metal ion coordinated inside the porphyrin ring is not influenced by the organotin(IV) moieties bonded to the oxygen atoms of the side chain sulfonatophenyl groups, as it has been inferred on the basis of Mössbauer spectroscopy and, in particular, from the invariance of the isomer shift of the Fe(III) and Sn(IV) atoms coordinated into the porphyrin square plane of the newly synthesized complexes, with respect to the same atoms in the free ligand.As far as the coordination polyhedra around the peripheral tin atoms are concerned, infrared spectra and experimental Mössbauer data would suggest octahedral and trigonal bipyramidal environments around tin, in polymeric configurations obtained, respectively, in the diorganotin derivatives through chelating or bridging sulfonate groups coordinating in the square plane, and in triorganotin(IV) complexes through bridging sulfonate oxygen atoms in axial positions.The structures of the (Me3Sn)4Sn(IV)Cl2[meso-tetra(4-sulfonatophenyl)porphinate] and of the two model systems, Me3Sn(PS)(HPS) and Me2Sn(PS)2 [HPS = phenylsulfonic acid], have been studied by a two layer ONIOM method, using the hybrid DFT B3LYP functional for the higher layer, including the significant tin environment. This approach allowed us to support the structural hypotheses inferred by the IR and Mössbauer spectroscopy analysis and to obtain detailed geometrical information of the tin environment in the compounds investigated.1H and 13C NMR data suggested retention of the geometry around the tin(IV) atom in D2O solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号