首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly-S-vinyl-O-tert-butylthiocarbonate is an excellent precursor to poly(vinyl mercaptan) because the tert-butyloxycarbonyl blocking group can be removed by either acid hydrolysis or thermolysis under conditions which minimize the oxidation of the liberated mercaptan to disulfide. Dilatometric studies of the homopolymerization of S-vinyl-O-tert-butylthiocarbonate demonstrated that the polymerization rate was directly proportional to the concentration of free-radical initiator; no thermal initiation was observed. The molecular weight of the homopolymers and copolymers ranged from 30,000 to 50,000 (GPC). Copolymerization of S-vinyl-O-tert-butylthiocarbonate (M2) with styrene, (r1 = 3.0, r2 = 0.2), methyl methacrylate (r1 = 1.40, r2 = 0.17) and vinyl acetate (r1 = 0.04, r2 = 11.0) indicated that a sulfur atom adjacent to the vinyl group increases the resonance stability (Q2 = 0.5) and the electron density (e2 = ?1.4) of the double bond and the corresponding radical. Water-soluble copolymers could be prépared by incorporating either N-vinylpyrrolidone (r1 = 0.12, r2 = 3.94) or N-isopropylacrylamide (r1 = 1.17, r2 = 0.3) with M2. The water solubility of the copolymers decreased markedly when the tert-butyloxycarbonyl group was removed. Copolymers of M2 with N-vinyl-O-tert-butylcarbamate (r1 = 0.13, r2 = 5.10) were utilized to prepare crosslinked poly(vinyl amine–vinyl mercaptan); the crosslinking resulted from urea linkages formed during thermolysis of the copolymer.  相似文献   

2.
(1R,2S,4R)-2-Cyano-7-oxabicyclo[2.2.1]hept-5-en-2-yl (1S′)-camphanate ( 5 ) was transformed into (?)-methyl 2,5-anhydro-3,4,6-O-tris[(tert-butyl)dimethylsilyl]-D -allonate ( 2 ), (+)-1,3-diphenyl-2-{2′,3′,5′-O-tris[(tert-butyl)dimethylsilyl]-β-D -ribofuranosyl}imidazolidine ( 3 ), and the benzamide 20 of 1-amino-2,5-anhydro-1-deoxy-3,4,6-O-tris-[((tert-butyl)dimethylsily)]-D -allitol. Compound 2 was converted efficiently into optically active tiazofurin ( 1 ).  相似文献   

3.
The N,N-diisopropylphosphoramidites 10a and 10b of appropriately protected chiral diastereoisomers of d(T[P-18O]-A) ( 8a and 8b , resp.), chiral by virtue of the isotope 18O at the P-atom, have been synthesized. The 18O-isotope was incorporated by oxidation of the phosphite triester 3 with H2[18O]/I2. Separation of the diastereoisomers was accomplished by flash chromatography of the O-3′-deprotected phosphate triesters 5a/b . The absolute configuration at the chiral P-atom was deduced from the methylation products of the fully deprotected diastereoisomers 8a and 8b . Phosphinylation of 5a and 5b yielded the configurationally pure phosphoramidites 10a and 10b , respectively, which were then employed in solid-phase synthesis to yield the self-complementary oligomers d(G-A-G-T-(Rp)-[P-18O]-A-C-T-C) ( 13 ) and d(G-A-G-T-(SP)-[P-18O]-A-C-T-C) ( 14 ), respectively.  相似文献   

4.

Abstract  

Extraction experiments in the two-phase water/nitrobenzene system and γ-activity measurements were used to determine the stability constant of protonated tetrakis(2-ethoxyethoxy)-tetra-p-tert-butylcalix[4]arene in nitrobenzene saturated with water. Density functional theory (DFT) calculations were applied to derive the most probable structure of the tetrakis(2-ethoxyethoxy)-tetra-p-tert-butylcalix[4]arene·H3O+ complex species.  相似文献   

5.
The [VO(acac)2]/Schiff base [R-2-(N-3,5-di-tert-butylsalicylidene)amino-2-phenyl-1-ethanol, S-2-(N-3,5-di-tert-butylsalicylidene)amino-3,3-dimethyl-1-butanol, S-2-(N-3,5-di-tert-butylsalicylidene)amino-3-methyl-1-butanol, or R-2-(N-3,5-di-tert-butylsalicylidene)amino-3-phenyl-1-propanol]/H2O2 catalytic systems for the asymmetric oxidation of sulfides and the [VO(acac)2]/(3bR,4aR)-2-(3,4,4-trimethyl-3b,4,4a,5-tetrahydrocyclopropa[3,4]cyclopenta[1,2-c]pyrazol-1-yl)ethanol/tert-butyl hydroperoxide/TBHP and VO(OAlkyl)3/[2,2]paracyclophane-4-carboxylic acid N-(1,1-dimethylethyl)-N-hydroxamide/TBHP catalytic systems for the asymmetric epoxidation of allylic alcohols were studied using 13C, 51V, and 17O NMR spectroscopy. The key intermediates of these systems (peroxo and alkylperoxo complexes of vanadium(V)) were detected, their structures in solution were studied, and the reactivity was evaluated.  相似文献   

6.
Ethyl and tert-butyl azidoformate added to 7-oxabicyclo[2.2.1]hept-5-en-2-one dimethyl ( 5 ) and dibenzyl ( 6 ) acetals to give mixtures of regioisomeric triazolines. The latter gave the corresponding aziridines (6,6-dialkoxy-3-aza-8-oxatricyclo[3.2.1.02,4]octane-3-carboxylates 15 , 19 , 23 , and 27 and 31 ) on UV irradiation. In the presence of protic acids, the aziridines were rearranged into protected amines ([3-endo-alkoxy-5-oxo-7-oxabicyclo[2.2.1]hept-2-exo-yl]carbamates 16 , 20 , 24 , and 28 and 33 ). Using (+)-(1R, 4R)-5,5-bis(benzyloxy)7-oxabicyclo[2.2.1]hept-2-ene((+)- 6 ) derived from furan and l-cyanovinyl (1S)-camphanate, the method was applied to prepare 2-O-benzyl-3-[(tert-butoxy)carbonyiamino]-5-O-(3-chlorobenzoyl)-3-deoxy-β-D -altrofuranurono-6,1-lactone ((?)- 37 ). This compound was converted to methyl 3-amino-3-deoxy-α-D-altropyranoside hydrochloride ( 44 ) and several derivatives.  相似文献   

7.
The synthesis of selectively labeled [3-14C]-L-tryptophan and its derivative 5′-hydroxy-[3-14C]-L-tryptophan using chemical and multienzymatic methods is reported. The key intermediate for this synthesis, [3-14C]-DL-alanine was obtained from 14CH3I as a result of its condensation with N-(diphenylmethylene)glycine tert-butyl ester. Next, the mixture containing [3-14C]-DL-alanine, indole or 5-hydroxyindole has been converted to [3-14C]-L-tryptophan or 5′-hydroxy-[3-14C]-L-tryptophan, respectively, in a one-pot multienzymatic reaction using four enzymes: D-amino acid oxidase, catalase, glutamic-pyruvic transaminase and tryptophanase.  相似文献   

8.
The formation of p-tert-butylcalix[5]arene by the opening ofp-tert-butyldihomooxacalix [4]arene and the addition of a monomer has beenstudied. Various facets, including the effects of bases and the nature ofthe monomer added to the p-tert-butyldihomooxacalix[4]arene, have beeninvestigated. p-tert-Butylcalix[5]arene can be prepared in yields up to30%. The structure of its 1 : 2 complex with DMF has been determinedby X-ray crystallography. Crystals are triclinic, space group P¯1, a =1428.2(3) pm, b = 1837.3(3) pm, c = 1276.1(2) pm, = 108.98(1)°, = 105.02(2)°, = 95.21(1)°, Z = 2, D c = 1.059 kg m-3,final R value = 0.087. The macrocycle adopts a cone conformation, one guestenclosed inside the cavity, the other one outside.  相似文献   

9.
Functionalization of the phenolic rim of p-tert-butylcalix[8]arene with phenanthroline to create a cavity leads to formation of two regioisomers. Substitution of positions 1 and 5 produces the known C2v-symmetric regioisomer 1,5-(2,9-dimethyl-1,10-phenanthroyl)-p-tert-butylcalix[8]arene ( L1,5 ), while substitution of positions 1 and 4 produces the Cs-symmetric regioisomer 1,4-(2,9-dimethyl-1,10-phenanthroyl)-p-tert-butylcalix[8]arene ( L1,4 ) described herein. [ Cu(L1,4)I ] was synthesized from L1,4 and CuI in good yield and characterized spectroscopically. To evaluate the effect of its cavity on catalysis, Ullmann-type C−S coupling was chosen as proof-of-concept. Selected aryl halides were used, and the results compared with the previously reported Cu(I)/ L1,5 system. Only highly activated aryl halides generate the C−S coupling product in moderate yields with the Cu(I)/ L1,4 system. To shed light on these observations, detailed computational investigations were carried out, revealing the influence of the calix[8]arene macrocyclic morphology on the accessible conformations. The L1,4 regioisomer undergoes a deformation that does not occur with L1,5 , resulting in an exposed catalytic center, presumably the cause of the low activity of the former system. The 1,4-connectivity was confirmed in the solid-state structure of the byproduct [ Cu(L1,4 − H) (CH3CN)2] that features Cu(I) coordinated inside a cleft defined by the macrocyclic framework.  相似文献   

10.
An efficient synthesis of the unknown 2′-deoxy-D-threo-tubercidin ( 1b ) and 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) as well as of the related nucleosides 9a, b and 10b is described. Reaction of 4-chloro-7-(2-deoxy-β-D-erythro-pentofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine ( 5 ) with (tert-butyl)diphenylsilyl chloride yielded 6 which gave the 3′-keto nucleoside 7 upon oxidation at C(3′). Stereoselective NaBH4 reduction (→ 8 ) followed by deprotection with Bu4NF(→ 9a )and nucleophilic displacement at C(6) afforded 1b as well as 7-deaza-2′-deoxy-D-threo-inosine ( 9b ). Mesylation of 4-chloro-7-{2-deoxy-5-O-[(tert-butyl)diphenylsilyl]-β-D-threo-pentofuranosyl}-7H-pyrrolo[2,3-d]-pyrimidine ( 8 ), treatment with Bu4NF (→ 12a ) and 4-halogene displacement gave 2′, 3′-didehydro-2′, 3′-dideoxy-tubercidin ( 3 ) as well as 2′, 3′-didehydro-2′, 3′-dideoxy-7-deazainosne ( 12c ). On the other hand, 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) resulted from 8 by treatment with diethylamino sulfurtrifluoride (→ 10a ), subsequent 5′-de-protection with Bu4NF (→ 10b ), and Cl/NH2 displacement. 1H-NOE difference spectroscopy in combination with force-field calculations on the sugar-modified tubercidin derivatives 1b , 2 , and 3 revealed a transition of the sugar puckering from the 3′T2′ conformation for 1b via a planar furanose ring for 3 to the usual 2′T3′ conformation for 2.  相似文献   

11.
Abstract

The kinetics of phase-transfer-agent-assisted free-radical polymerization of methyl methacrylate using K2S2O8 as the water-soluble initiator and triethylbenzylammonium chloride (TEBA) as the phase-transfer catalyst (PTC) was investigated in toluene-water biphase media at 60°C. The effect of varying [MMA], [K2S2O8], [TEBA], [H+], the ionic strength of the medium, and the temperature on the rate of polymerization (R p) was studied. R p was found to be proportional to [MMA]2, [K2S2O8]1, and [TEBA]0.5. Based on the kinetic results, a mechanism involving initiation of polymerization by phase-transferred S2O8 2- and termination by Q+ (quaternary ammonium ion) is proposed.  相似文献   

12.
The title compounds, μ‐(tri‐tert‐butoxy­silanethiol­ato‐κ2S:S)‐bis[(tetra­hydro­furan‐κO)lithium(I)], [Li2(C12H27O3SSi)2(C4H8O)2], (I), and catena‐poly[[bis­(μ‐tri‐tert‐butoxysilanethiol­ato)‐1:2κ2S;1κS:2κS,O‐dilithium(I)]‐μ‐dimethoxy­ethane‐κ2O:O′], [Li2(C12H27O3SSi)2(C4H10O2)]n, (II), were obtained by the reaction of tri‐tert‐butoxy­silanethiol with metallic lithium. The crude product, when recrystallized from tetra­hydro­furan (THF) yields (I), and when recrystallized from 1,2‐dimethoxy­ethane (DME) gives (II). Compound (I) forms centrosymmetric dimers in the solid state with an Li2S2 central core, whereas (II) forms infinitely long chains, in which the centrosymmetric dimeric units are linked together by the bidentate DME ligand (also residing on an inversion centre), thus forming a coordination polymer. The formation of a one‐dimensional structure in (II) is a consequence of replacement of a monodentate THF solvent mol­ecule with a bidentate DME mol­ecule.  相似文献   

13.
An N-tert-butyloxycarbonylated organic synthesis intermediate, (S)-tert-butyl 1-phenylethylcarbamate, was prepared and investigated by means of differential scanning calorimetry (DSC) and thermogravimetry (TG). The molar heat capacities of (S)-tert-butyl 1-phenylethylcarbamate were precisely determined by means of adiabatic calorimetry over the temperature range of 80-380 K. There was a solid–liquid phase transition exhibited during the heating process with the melting point of 359.53 K. The molar enthalpy and entropy of this transition were determined to be 29.73 kJ mol−1 and 82.68 J K−1 mol−1 based on the experimental C pT curve, respectively. The thermodynamic functions, [HT0 - H298.150 H_{T}^{0} - H_{298.15}^{0} ] and [ST0 - S298.150 S_{T}^{0} - S_{298.15}^{0} ], were calculated from the heat capacity data in the temperature range of 80–380 K with an interval of 5 K. TG experiment showed that the pyrolysis of the compound was started at the temperature of 385 K and terminated at 510 K within one step.  相似文献   

14.
《Tetrahedron: Asymmetry》2000,11(11):2289-2298
A one-pot reaction of (2S,5R)-(−)-tert-butyl-[(2-tert-butoxycarbonyl)amino]-5-hydroxy-6-aminohexanoate 2b or (S)-(−)-tert-butyl-[(2-tert-butoxycarbonyl)amino]-6-aminohexanoate 2c with (S)-(−)-tert-butyl-6-bromo-[bis-(2-tert-butoxycarbonyl)amino]-5-oxohexanoate 5 in the presence of K2CO3 in MeCN–MeOH followed by hydrolysis gave bone collagen cross-links, (+)-Pyd 1b or (+)-Dpd 1c, in 42–48% yield, respectively.  相似文献   

15.
《Tetrahedron: Asymmetry》2005,16(4):793-800
Inherently chiral anti-O,O′-dibenzyl-p-tert-butylcalix[4]arene 1 was resolved as the (S)-2-methoxy-2-(naphthalen-1-yl)propionic ester by flash chromatography. Conversely, the anti-O,O′-dibutyl analogue 2 was resolved as the (Sa)-2′-methoxy-1,1′-binaphthalene-2-carboxylic ester by crystallization combined with flash chromatography. CD analysis of these compounds indicated the absolute stereochemistries to be (Sa)-(+)-1 and (Sa)-(+)-2, respectively, the former of which was confirmed by X-ray crystallographic analysis.  相似文献   

16.
The 1H NMR parameters of the NCH2O protons in the spectrum of perhydropyrrolo[1,2-c][1,3]oxazine show its existence in solution at room temperature in the O-inside cis-fused conformation. rel-(3aS,6aS,6bR,10aS,11aS)-6a-Methylperhydroindolo[3,2,1-i,j]benzoxazine and rel-(3aS,6aS,6bS,10aR,11aS)-6a-methylperhydroindolo[3,2,1-i,j]benzoxazine are shown to adopt cis- and trans-fused conformations, respectively, for the corresponding bicyclic moiety.  相似文献   

17.
In the title compounds, [N‐(phenyl{2‐[N‐(S)‐(2‐picolyl)­prolyl­amino]­phenyl}methyl­ene)‐(S)‐phenyl­alaninato]­nickel(II), [Ni(C33H30N4O3)], (I), [N‐(phenyl{2‐[N‐(S)‐(3‐picolyl)­prolyl­amino]­phenyl}methyl­ene)‐(S)‐phenyl­alaninato]­nickel(II) hemihydrate, [Ni(C33H30N4O3)]·0.5H2O, (II), and [N‐({2‐[N‐(S)‐ethyl­prolyl­amino]­phenyl}phenyl­methyl­ene)‐(S)‐phenyl­ala­nin­ato]­nickel(II), [Ni(C29H29N3O3)], (III), the NiII centres have approximate square‐planar coordination geometries from N3O donor sets. The picolyl N atoms in (I) and (II) are too remote from the metal centres to interact significantly, but the metal coordination geometries experience tetrahedral distortion and/or displacement of the metal centre from the N3O plane. These are linked to conformational differences between the ligands of the symmetry‐independent complexes (Z′ = 2), which in turn are related to molecular packing. In (III), where a less sterically demanding ethyl group replaces the picolyl substituents, there are none of the distortions or displacements seen in (I) and (II).  相似文献   

18.
The irradiation of 2,3-bis(tert-butylsulfonyl)norbornadiene (5) and 2-(tert-butylsulfonyl)norbornadiene (6) yielded the expected quadricyclane derivatives as stable molecules. The irradiation of 2,3-bis(tert-butylsulfonyl)bicyclo[2.2.2]octa-2,5-diene(7) 2,3-bis(tert-butylsulfonyl)-exo-7,8-epoxybicyclo[2.2.2]-octa-2,5-diene (8) and 8,9-bis(tert-butylsulfonyl)-4-anti-phenyl-3,5-dioxa-exo-tricyclo[5.2.2.02,6] undeca-8,10-diene 9a and its syn-isomer 9b yielded the corresponding tetracyclic and pentacyclic systems, respectively. The photoproducts of 8 and 9 reverted to the starting products slowly at room temperature. The half-life of the photoproduct of 7 was determined to be 34 min at 50 °C. Compound 9a reacted with n-BuLi to yield the unexpected desulfonylation product 27a.  相似文献   

19.
Highly regio- and stereoselective monohydroxylation of the C?C bond of (+)-7-oxabicyclo[2.2.1]hept-5-en-2-one ( 8 ) was achieved via LiAlH4 reduction of the corresponding 5,6-exo-epoxy dimethyl acetal 9 . The reaction gave exclusively (–)-(1R, 2R, 4S)-6,6-dimethoxy-7-oxabicyclo[2.2.1]heptan-2-exo-ol ( 10 ) which was transformed into 2,5-anhydro-3-O-benzyl-4-deoxy-D -ribo-hexonic acid ( 15 ) and 2,5-anhydro-4-deoxy-D -ribo-hexonic acid ( 6 ) via ozonolysis of (–)-(1R, 4S, 6R)-6-exo-benzyloxy-2-{[(tert-butyl)dimethylsilyl]oxy}-7-oxabicyclo[2.2.1]hept-2-ene ( 14 ). Cordycepin C ( 5 ) was derived from 6 and 4,5,6-triaminopyrimidine using CsF/DMF to generate the adenine heterocycle.  相似文献   

20.
The complexes [2‐(1H‐imidazol‐4‐yl‐κN3)ethylamine‐κN]bis(tri‐tert‐butoxysilanethiolato‐κS)cobalt(II), [Co(C12H27O3SSi)2(C5H9N3)], and [2‐(1H‐imidazol‐4‐yl‐κN3)ethylamine‐κN]bis(tri‐tert‐butoxysilanethiolato‐κS)zinc(II), [Zn(C12H27O3SSi)2(C5H9N3)], are isomorphous. The central ZnII/CoII ions are surrounded by two S atoms from the tri‐tert‐butoxysilanethiolate ligand and by two N atoms from the chelating histamine ligand in a distorted tetrahedral geometry, with two intramolecular N—H...O hydrogen‐bonding interactions between the histamine NH2 groups and tert‐butoxy O atoms. Molecules of the complexes are joined into dimers via two intermolecular bifurcated N—H...(S,O) hydrogen bonds. The ZnII atom in [(1H‐imidazol‐4‐yl‐κN3)methanol]bis(tri‐tert‐butoxysilanethiolato‐κ2O,S)zinc(II), [Zn(C12H27O3SSi)2(C4H6N2O)], is five‐coordinated by two O and two S atoms from the O,S‐chelating silanethiolate ligand and by one N atom from (1H‐imidazol‐4‐yl)methanol; the hydroxy group forms an intramolecular hydrogen bond with sulfur. Molecules of this complex pack as zigzag chains linked by N—H...O hydrogen bonds. These structures provide reference details for cysteine‐ and histidine‐ligated metal centers in proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号