首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of the eta9,eta5-bis(indenyl)zirconium sandwich complex, (eta9-C9H5-1,3-(SiMe3)2)(eta5-C9H5-1,3-(SiMe3)2)Zr, with dialkyl ethers such as diethyl ether, CH3OR (R=Et, nBu, tBu), nBu2O, or iPr2O resulted in facile C-O bond scission furnishing an eta5,eta5-bis(indenyl)zirconium alkoxy hydride complex and free olefin. In cases where ethylene is formed, trapping by the zirconocene sandwich yields a rare example of a crystallographically characterized, base-free eta5,eta5-bis(indenyl)zirconium ethylene complex. Observation of normal, primary kinetic isotope effects in combination with rate studies and the stability of various model compounds support a mechanism involving rate-determining C-H activation to yield an eta5,eta5-bis(indenyl)zirconium alkyl hydride intermediate followed by rapid beta-alkoxide elimination. For isolable eta6,eta5-bis(indenyl)zirconium THF compounds, thermolysis at 85 degrees C also resulted in C-O bond cleavage to yield the corresponding zirconacycle. Both mechanistic and computational studies again support a pathway involving haptotropic rearrangement to eta5,eta5-bis(indenyl)zirconium intermediates that promote rate-determining C-H activation and ultimately C-O bond scission.  相似文献   

2.
Addition of principally sigma-donating ligands such as THF, chelating diethers, or 1,2-bis(dimethyl)phosphinoethane to eta(9),eta(5)-bis(indenyl)zirconium sandwich complexes, (eta(9)-C(9)H(5)-1,3-R(2))(eta(5)-C(9)H(5)-1,3-R(2))Zr (R = alkyl or silyl), induces haptotropic rearrangement to afford (eta(6)-C(9)H(5)-1,3-R(2))(eta(5)-C(9)H(5)-1,3-R(2))ZrL adducts. Examples where L = THF and DME have been characterized by X-ray diffraction and revealed significant buckling of the eta(6) benzo ring, consistent with reduction of the arene, and highlight the importance of the zirconium(IV) canonical form. For the THF-induced haptotropic rearrangements, the thermodynamic driving force for ring migration has been measured as a function of indenyl substituent and demonstrates silylated sandwiches favor THF coordination and the eta(6),eta(5) bonding motif over their alkylated counterparts. In the case of chelating diethers, measurement of the corresponding equilibrium constants establish more stable eta(6),eta(5) adducts with five- over four-membered chelates and with smaller oxygen and carbon backbone substituents. Kinetic studies on both THF and DME addition to (eta(9)-C(9)H(5)-1,3-(SiMe(3))(2))(eta(5)-C(9)H(5)-1,3-(SiMe(3))(2))Zr established a first-order dependence on the incoming ligand, consistent with a mechanism involving direct attack of the incoming nucleophile on the eta(9),eta(5) sandwich. These results further highlight the ability of the indenyl ligand to smoothly adjust hapticity to meet the electronic requirements of the metal center.  相似文献   

3.
The mechanisms of three closely related reactions were studied in detail by means of DFT/B3 LYP calculations with a VDZP basis set. Those reactions correspond to 1) the reductive elimination of methane from [Zr(eta5-Ind)2(CH3)(H)] (Ind=C9H7-, indenyl), 2) the formation of the THF adduct, [Zr(eta5-Ind)(eta6-Ind)(thf)] and 3) the interconversion between the two indenyl ligands in the Zr sandwich complex, [Zr(eta5-Ind)(eta9-Ind)], which forms the link between the two former reactions. An analysis of the electronic structure of this species indicates a saturated 18-electron complex. A full understanding of the indenyl interchange process required the characterisation of several isomers of the Zr-bis(indenyl) species, corresponding to different spin states (S=0 and S=1), different coordination modes of the two indenyl ligands (eta5/eta9, eta5/eta5 and eta6/eta9), and three conformations for each isomer (syn, anti, and gauche). The fluxionality observed was found to occur in a mechanism involving bis(eta5-Ind) intermediates, and the calculated activation energy (11-14 kcal mol(-1)) compares very well with the experimental values. Two alternative mechanisms were explored for the reductive elimination of methane from the methyl/hydride complex. In the more favourable one, the initial complex, [Zr(eta5-Ind)2(CH3)(H)], yields [Zr(eta5-Ind)2] and methane in one crucial step, followed by a smooth transition of the Zr intermediate to the more stable eta5/eta9-species. The overall activation energy calculated (Ea=29 kcal mol(-1)) compares well with experimental values for related species. The formation of the THF adduct follows a one step mechanism from the appropriate conformer of the [Zr(eta5-Ind)(eta9-Ind)] complex, producing easily (Ea=6.5 kcal mol(-1)) the known product, [Zr(eta5-Ind)(eta6-Ind)(thf)], a species previously characterised by X-ray crystallography. This complex was found to be trapped in a potential well that prevents it from evolving to the 3.4 kcal mol(-1) more stable isomer, [Zr(eta5-Ind)2(thf)], with both indenyl ligands in a eta5-coordination mode and a spin-triplet state (S=1).  相似文献   

4.
Disulfide-bridged dinuclear ruthenium complexes [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-X)(mu,eta(2)-S(2))][ZnX(3)(MeCN)] (X = Cl (2), Br (4)), [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-Cl)(2)(mu,eta(1)-S(2))](CF(3)SO(3)) (5), [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-Cl)(mu,eta(2)-S(2))](BF(4)) (6), and [[Ru(MeCN)(2)(P(OMe)(3))(2)](2)(mu-Cl)(mu,eta(1)-S(2))](CF(3)SO(3))(3) (7) were synthesized, and the crystal structures of 2 and 4 were determined. Crystal data: 2, triclinic, P1, a = 15.921(4) A, b = 17.484(4) A, c = 8.774(2) A, alpha = 103.14(2) degrees, beta = 102.30(2) degrees, gamma = 109.68(2) degrees, V = 2124(1) A(3), Z = 2, R (R(w)) = 0.055 (0.074); 4, triclinic, P1 a = 15.943(4) A, b = 17.703(4) A, c = 8.883(1) A, alpha = 102.96(2) degrees, beta = 102.02(2) degrees, gamma = 109.10(2) degrees, V = 2198.4(9) A(3), Z = 2, R (R(w)) = 0.048 (0.067). Complexes 2 and 4 were obtained by reduction of the disulfide-bridged ruthenium complexes [[RuX(P(OMe)(3))(2)](2)(mu-X)(2)(mu,eta(1)-S(2))] (X = Cl (1), Br (3)) with zinc, respectively. Complex 5 was synthesized by oxidation of 2 with AgCF(3)SO(3). Through these redox steps, the coordination mode of the disulfide ligand was converted from mu,eta(1) in 1 and 3 to mu,eta(2) in 2 and 4 and further reverted to mu,eta(1) in 5. Electrochemical studies of 6 indicated that similar conversion of the coordination mode occurs also in electrochemical redox reactions.  相似文献   

5.
This report describes propylene polymerization reactions with titanium complexes bearing carbamato ligands, Ti(O2CNMe2)Cl2 ( I ) and Ti(O2CR2)4 [R2 = NMe2 ( II ), NEt2 ( III ) and ( IV )]. Combinations of these complexes and MAO form catalysts for the synthesis of atactic polypropylene, as confirmed by FT‐IR, DSC and 13C NMR analysis. Effects of main reaction parameters on the catalyst activity were studied including the type of complex, solvent, temperature, and the [Al]/[Ti] molar ratio. The highest activity was observed when chlorobenzene was used as a solvent and AlMe3‐depleted MAO was employed as a cocatalyst. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4095–4102  相似文献   

6.
The redox reaction of [Yb(C(9)H(7))(2)(thf)(2)] with the diazabutadiene PhN==C(Me)--C(Me)==NPh (DAD) has been found to depend on the molar ratio of the reactants. Reaction in a 1:2 molar ratio affords the dinuclear mixed-valent complex [Yb(2)(mu-eta(5):eta(4)-C(9)H(7))(eta(5)-C(9)H(7))(2){mu-eta(4):eta(4)-PhNC(Me)==C(Me)NPh}] containing an indenyl ligand with an unusual mu-eta(5):eta(4) bridging coordination. Reaction of equimolar amounts of these compounds results in an organolanthanide-mediated reductive coupling of the DAD ligands and formation of the tetranuclear mixed-valent complex [Yb(2)(mu-eta(5):eta(4)-C(9)H(7))(eta(5)-C(9)H(7))(2){mu-eta(4):eta(4)-PhNC(CH(2))==C(Me)NPh}](2) with a novel tetradentate tetraimine ligand.  相似文献   

7.
Reaction of the stanna-closo-dodecaborate salt [Bu3MeN]2[SnB11H11] with the dimeric ruthenium complex [Ru2(mu-Cl)3(triphos)2]Cl (triphos = {MeC(CH2PPh2)3}) in refluxing acetonitrile yields the zwitterionic compound [Ru(SnB11H11)(MeCN)2(triphos)] (4) which has been characterized by single-crystal X-ray diffraction analysis and solid-state NMR spectroscopy. Refluxing the zwitterion in acetone leads to an eta1(Sn) to eta3(BH) rearrangement with formation of [Ru(SnB1)H11)(triphos)] (5) whose structure has been confirmed by X-ray diffraction and multinuclear NMR spectroscopy in solution and in the solid state. Furthermore, two isomeric zwitterions fac- and mer-[Ru(SnB11H11)(dppb)(MeCN)3] (6a, 6b) and their rearrangement reactions as well as their NMR properties are described.  相似文献   

8.
The reactions of Zr(NR(2))(4) (1, R = Me; 2, R = Et) with an asymmetrical tridentate pincer type pyrrole ligand precursor [C(4)H(2)NH(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))] and treatment of the derivatives with either PhNCS or PhNCO have been carried out and characterized. Reacting Zr(NR(2))(4) (1, R = Me; 2, R = Et) with [C(4)H(2)NH(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))] generates Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NR(2))(2) (3, R = Me; 4, R = Et) in high yield along with the elimination of 2 equiv of dimethylamine or diethylamine, respectively. Interestingly, while changing the solvent from Et(2)O to CH(2)Cl(2), the complex Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))][C(4)H(2)N(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))]Cl (5) is produced by undergoing C-Cl bond cleavage. Furthermore, reaction of either 3 or 4 with 1 or 2 equiv of PhNCS or PhNCO yields Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NMe(2))[PhNC(NMe(2))S] (6), Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NEt(2))[PhNC(NEt(2))O] (7) and Zr[C(4)H(2)N(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))][PhNC(NEt(2))O](3) (8), respectively. All the aforementioned complexes were characterized by (1)H and (13)C NMR spectrometry and the molecular structures of 5, 6, and 8 have been determined by single-crystal X-ray diffractometry. Complexes 4, 5, and 7 initiated the ethylene polymerization in the presence of MAO as the co-catalyst.  相似文献   

9.
Exposure of eta9,eta5-bis(indenyl)zirconium sandwich complexes to 4 atm of H2 resulted in facile oxidative addition to furnish the corresponding zirconocene dihydrides, (eta5-C9H5-1,3-R2)2ZrH2 (R = SiMe3, SiMe2Ph, CHMe2). Continued hydrogenation completed conversion to the tetrahydroindenyl derivatives, (eta5-C9H9-1,3-R2)2ZrH2. Deuterium labeling studies established that dihydrogen (dideuterium) addition to the benzo rings is intramolecular and stereospecific, occurring solely from the endo face of the ligand, proximal to the zirconium. In the absence of dihydrogen, the bis(indenyl)zirconium dihydrides rearranged to new zirconium monohydride complexes containing an unusual eta5,eta3-4,5-dihydroindenediyl ligand, arising from metal-to-benzo ring hydrogen transfer. Mechanistic studies, including a normal, primary kinetic isotope effect measured at 23 degrees C, are consistent with a pathway involving regio- and stereoselective insertion of a benzo C=C bond into a zirconium hydride. The stereochemistry of the insertion reaction, and hence the eta5,eta3-4,5-dihydroindenediyl product, is influenced by the presence of donor ligands and controlled by the preferred conformation of the indenyl rings. Exposure of the zirconium hydrides containing the eta5,eta3-4,5-dihydroindenediyl rings to 1 atm of dihydrogen afforded the tetrahydroindenyl zirconium dihydride complexes, establishing the intermediacy of this unusual coordination environment during benzo ring hydrogenation.  相似文献   

10.
An EPR study of the vanadocene complexes (C(5)H(5))2V(CN)2 and (CH(3)C(5)H(4))2V(CN)2 was carried out. Such compounds show strong super-hyperfine coupling (|a(iso)(13C)| approximately 1.27 mT) when 13C labeled cyanide is used for their preparation. Super-hyperfine splitting was observed in the isotropic spectra of solution samples as well as in the anisotropic spectra of frozen solutions. Such studies were supplemented with structural characterization of the parent compounds. Molecular structure of the complex (CH(3)C(5)H(4))2V(CN)2 was determined by single-crystal X-ray diffraction analysis. Both compounds were characterized by infrared and Raman spectroscopy.  相似文献   

11.
Hydride abstraction from C(5)Me(5)(CO)(2)Re(eta(2)-PhC triple bond CCH(2)Ph) (1) gave a 3:1 mixture of eta(3)-propargyl complex [C(5)Me(5)(CO)(2)Re(eta(3)-PhCH-C triple bond CPh)][BF(4)] (5) and eta(2)-1-metalla(methylene)cyclopropene complex [C(5)Me(5)(CO)(2)Re(eta(2)-PhC-C=CHPh)][BF(4)] (6). Observation of the eta(2)-isomer requires 1,3-diaryl substitution and is favored by electron-donating substituents on the C(3)-aryl ring. Interconversion of eta(3)-propargyl and eta(2)-1-metalla(methylene)cyclopropene complexes is very rapid and results in coalescence of Cp (1)H NMR resonances at about -50 degrees C. Protonation of the alkynyl carbene complex C(5)Me(5)(CO)(2)Re=C(Ph)C triple bond CPh (22) gave a third isomer, the eta(3)-benzyl complex [C(5)Me(5)(CO)(2)Re[eta(3)(alpha,1,2)-endo,syn-C(6)H(5)CH(C triple bond CC(6)H(5))]][BF(4)] (23) along with small amounts of the isomeric complexes 5 and 6. While 5 and 6 are in rapid equilibrium, there is no equilibration of the eta(3)-benzyl isomer 23 with 5 and 6.  相似文献   

12.
Thin films of ceria (CeO(2)) have many applications, and their synthesis by liquid-injection MOCVD (metal-organic chemical vapor deposition) or ALD (atomic layer deposition) requires volatile precursor compounds. Here we report the synthesis of a series of homoleptic and heteroleptic Ce(IV) complexes with donor-functionalized alkoxide ligands mmp (1-methoxy-2-methylpropan-2-olate), dmap (1-(dimethylamino)propan-2-olate), and dmop (2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)propan-2-olate) and their potential as precursors for MOCVD and ALD of CeO(2). New complexes were synthesized by alcohol exchange reactions with [Ce(OBu(t))(4)]. [Ce(mmp)(4)] and [Ce(dmap)(4)] were both found to be excellent precursors for liquid-injection MOCVD of CeO(2), depositing high purity thin films with very low carbon contamination, and both have a large temperature window for diffusion controlled growth (350-600 °C for [Ce(mmp)(4)]; 300-600 °C for [Ce(dmap)(4)]). [Ce(mmp)(4)] is also an excellent precursor for liquid-injection ALD of CeO(2) using H(2)O as oxygen source and demonstrates self-limiting growth from 150 to 350 °C. [Ce(dmap)(4)] has lower thermal stability than [Ce(mmp)(4)] and does not show self-limiting growth in ALD. Heteroleptic complexes show a tendency to undergo ligand redistribution reactions to form mixtures in solution and are unsuitable as precursors for liquid-injection CVD.  相似文献   

13.
Treatment of anhydrous chromium(III) chloride with 2 or 3 equivalents of 1,3-di-tert-butylacetamidinatolithium or 1,3-diisopropylacetamidinatolithium in tetrahydrofuran at ambient temperature afforded Cr(tBuNC(CH3)NtBu)2(Cl)(THF) and Cr(iPrNC(CH3)NiPr)3 in 78% and 65% yields, respectively. Treatment of Cr(tBuNC(CH3)NtBu)2(Cl)(THF) with the potassium salts derived from pyrazoles and 1,2,4-triazoles afforded Cr(tBuNC(CH3)NtBu)2(X), where X=3,5-disubstituted pyrazolato or 3,5-disubstituted 1,2,4-triazolato ligands, in 65-70% yields. X-Ray crystal structure analyses of Cr(tBuNC(CH3)NtBu)2(Me2pz) (Me2pz=3,5-dimethylpyrazolato) and Cr(tBuNC(CH3)NtBu)2(Me2trz) (Me2trz=3,5-dimethyl-1,2,4-triazolato) revealed eta2-coordination of the Me2pz and Me2trz ligands. Treatment of Cr(tBuNC(CH3)NtBu)2(Cl)(THF) with trifluoromethyltetrazolatosodium (NaCF3tetz) in the presence of 4-tert-butylpyridine afforded Cr(tBuNC(CH3)NtBu)2(CF3tetz)(4-tBupy) in 30% yield. An X-ray crystal structure determination showed eta1-coordination of the tetrazolato ligand through the 2-nitrogen atom. The complexes Cr(iPrNC(CH3)NiPr)3 and Cr(tBuNC(CH3)NtBu)2(X) are volatile and sublime with <1% residue between 120 and 165 degrees C at 0.05 Torr. In addition, these complexes are thermally stable at >300 degrees C under an inert atmosphere such as nitrogen or argon. Due to the good volatility and high thermal stability, these new compounds are promising precursors for the growth of chromium-containing thin films using atomic layer deposition.  相似文献   

14.
A series of new ethylene-bridged bis(imidazolium) halides with various N-substitutions were synthesized. Complexation of these imidazolium halides with Pd(OAc)2 produced new Pd(II) ethylene-bridged bis(carbene) complexes. Crystallographic analyses of some of the new imidazolium salts and Pd(II) complexes were determined. Applications of these seven-member palladacycles in Suzuki and Heck coupling reactions produced comparable catalytic activities to those of six-member analogs.  相似文献   

15.
Novel Pd(II) mixed N,S-heterocyclic carbene (NSHC)-phosphine complexes of the general formula [PdBr(2)(NSHC)(PR(3))] were obtained from bridge cleavage of dinuclear NSHC complexes of type [PdBr(2)(NSHC)](2) [NSHC = 3-benzylbenzothiazolin-2-ylidene and 3-propylbenzothiazolin-2-ylidene] with triphenylphosphine, tricyclohexylphosphine and 2-diphenylphosphanyl-pyridine. All complexes have been fully characterized by (1)H and (13)C NMR spectroscopy, ESI mass spectrometry and elemental analysis. The X-ray crystal structures of complexes 3-8 are reported. The complexes exhibit moderate to good catalytic activity in the Suzuki-Miyaura coupling reaction of aryl bromides and chlorides.  相似文献   

16.
Reaction of the dimer [(Cp*IrCl)2(P-Cl)2] with chiral pyridylamino ligands (pyam, L1-L5) in the presence of NaSbF6 gave complexes [Cp*IrCl(pyam)][SbF6] 1-5 as diastereomeric mixtures, which have been fully characterised, including the X-ray molecular structure determination of the complexes (S(Ir),R(N),R(C))-[Cp*IrClL1][SbF6] 1a and (R(Ir),S(N),S(C))-[Cp*IrClL5][SbF6] 5a. Treatment of these cations with AgSbF6 affords the corresponding aqua species [Cp*Ir(pyam)(H2O)][SbF6]2 6-10 which have been also fully characterised. The molecular structure of the complex (S(Ir),R(N),R(C))-[Cp*IrL,(H2O)][SbF6]2 6 has been determined by X-ray diffractometric methods. The aqua complexes [Cp*Ir(pyam)(H2O)][SbF6]2 (6, pyam = L2 (7), L3 (8)) evolve to the cyclometallated species [Cp*Ir{kappa3(N,N',C)-(R)-(C6H4)CH(CH3)NHCH2C5NH4}][SbF6] (11), [Cp*Ir{kappa3(N,N',C)-(R)-(C10H6)CH(CH3)-NHCH2C5NH4)}][SbF6] (12), and [Cp*Ir{kappa3(N,N',C)-(R)-(C10H6)CH(CH3)NHCH2C9NH6)}][SbF6] (13) respectively, via intramolecular activation of an ortho C-H aryl bond. Complexes 6-10 are enantioselective catalysts for the Diels-Alder reaction between methacrolein and cyclopentadiene. Reaction occurs rapidly at room temperature with good exo : endo selectivity (from 81 : 19 to 98 : 2) and moderate enantioselectivity (up to 72%). The involved intermediate Lewis acid-dienophile compounds [Cp*Ir(pyam)(methacrolein)][SbF]2 (pyam = L4 (14), L5 (15)) have been isolated and characterised.  相似文献   

17.
The complexes [Et(4)N](3)[Ln(eta(2)-dcnm)(6)] (Ln = La, Ce, Nd, Gd, dcnm = dicyanonitrosomethanide) have discrete N, O 12-coordination owing to symmetrical chelation of the nitroso donor groups.  相似文献   

18.
A series of Cu(II) complexes Cu(2)[micro-pz](2)[HB(pz)(3)](2) (1), Cu[H(2)B(pz)(2)](2) (2), Cu[HB(pz)(3)](2) (3), Cu[HB(pz(Me2))(3)](2) (4), Cu[B(pz)(4)](2) (5) (pz=pyrazole), have been synthesized and characterized by elemental analysis, IR, UV-vis, X-ray diffraction, thermal analysis and theoretical analysis. The IR spectra give the Cu-N vibration modes at 322, 366, 344, 387, and 380 cm(-1) in complexes 1-5, respectively. The UV spectra show all the complexes have same UV absorption at 232 nm; there is another band at 332 nm for complexes 1, 2 and 4, while for complexes 3 and 5, the bands are at 272 and 308 nm, respectively. Complex 1 has a binuclear structure in which two pyrazole ligands bridge two Cu-Tp units. In 2-5, the Cu(II) centers are coordinated with dihydrobis(pyrazolyl)borate (Bp), hydrotris(pyrazolyl)borate (Tp), hydrotris(3,5-Me2pyrazolyl)borate (Tp'), tetrakis(pyrazolyl)borate (Tkp) respectively to form a mononuclear structure. The results of thermal analysis for complexes 1-5 are discussed too.  相似文献   

19.
In an effort to find simple and common single-source precursors for palladium sulfide nanostructures, palladium(II) complexes, [Pd(S2X)2] (X = COMe (1), COiPr (2)) and η3-allylpalladium complexes with xanthate ligands, [(η3-CH2C(CH3)CR2)Pd(S2X)] (R = H, X = COMe (3); R = H, X = COEt (4); R = H, X = COiPr (5); R = CH3, X = COMe (6)), have been investigated. The crystal structures of [Pd(S2X)2] (X = COMe (1), CoiPr (2)) and [(η3-CH2C(CH3)CH2)Pd(S2COMe)] (3) have been established by single crystal X-ray diffraction analysis. The complexes, 1, 2 and 3 all contain a square planar palladium(II) centre. In the allyl complex 3, this is defined by the two sulfurs of the xanthate and the outer carbons of the 2-methylallyl ligand, while in the complexes, 1 and 2 it is defined by the four sulfur atoms of the xanthate ligand. Thermogravimetric studies have been carried out to evaluate the thermal stability of η3-allylpalladium(II) analogues. The complexes are useful precursors for the growth of nanocrystals of PdS either by furnace decomposition or solvothermolysis in dioctyl ether. The solvothermal decomposition of complexes in dioctyl ether gives a new metastable phase of PdS which can be transformed to the more stable tetragonal phase at 320 °C. The nanocrystals obtained have been characterized by PXRD, SEM, TEM and EDX.  相似文献   

20.
Four stanna-closo-dodecaborate complexes of ruthenium have been prepared and characterized by multinuclear NMR studies in solution and in the solid state. The solid-state structures of the dimeric zwitterions [[Ru(dppb)(SnB11H11)]2] (2) (dppb = bis(diphenylphosphino)butane), [[Ru(PPh3)2(SnB11H11)]2] (3), and the dianionic ruthenium complex [Bu3MeN]2[Ru(dppb)[2,7,8-(mu-H)3-exo-SnB11H11](SnB11H11)] (4) were determined by X-ray crystal structure analysis; they establish an unprecedented structural motif in the chemistry of heteroboranes and transition-metal fragments with the stanna-closo-dodecaborate moiety as a two-faced ligand that exhibits eta1(Sn) as well as eta3(B-H) coordination. The eta3-coordinated stannaborate in 4 and in the isostructural compound [Bu3MeN]2[Ru(PPh3)2[2,7,8-(mu-H)3-exo-SnB11H11](SnB11H11)] (5) shows fluxional behavior, which was studied in detail by using 31P[1H] EXSY and DNMR experiments. The activation parameters for the dynamic process of 5 are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号