首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The syntheses and characterisation of the Co(III) complexes [(L)Co(O2CO)]ClO4 (L = a tripodal tetraamine ligand = baep, abap, uns-penp, dppa, trpn) are reported. Geometric isomers are possible for all but the trpn complex, owing to the non-equivalence of the three arms on the tripodal ligand, and both NMR and X-ray crystallography are used to identify the single isomer formed. X-ray crystal structures of the complexes [(L)Co(O2CO)]ClO4 · xH2O (L = baep, x = 0.5; L = abap, x = 0; L = uns-penp, x = 1; L = dppa, x = 0; L = trpn, x = 1) are reported; little variation is observed in the geometry of the carbonate chelate ring while significant lengthening of bonds and expansion of angles involving the cobalt ion occurs as the number of six-membered chelate rings in the complex cations increases. 59Co NMR chemical shift data for the complexes show the expected linear relationship between λmax, the wavelength of the lowest energy dd transition, and γ, the magnetogyric ratio of the 59Co nucleus. An excellent correlation between Δ, the d orbital splitting parameter, and δ(59Co) also exists for these complexes. Rate data for the acid hydrolysis of [(L)Co(O2CO)]+ (L = uns-penp, dppa) in 1.0 M HClO4 differ by two orders of magnitude, and this is attributed to the differing steric accessibility of the endo O atoms in each complex. DFT calculations on the complexes reproduce the isomeric preferences, UV–Vis and 59Co NMR spectroscopic data well, provided that solvent effects are included.  相似文献   

2.
The synthesis and characterization (X-ray crystallography, UV/vis spectroscopy, electrochemistry, ESI-MS, and (1)H, (13)C, and (59)Co NMR) of the complexes [Co(L)(O(2)CO)]ClO(4)xH(2)O (L = tpa (tpa = tris(2-pyridylmethyl)amine) (x = 1), pmea (pmea = bis((2-pyridyl)methyl)-2-((2-pyridyl)ethyl)amine) (x = 0), pmap (pmap = bis(2-(2-pyridyl)ethyl)(2-pyridylmethyl)amine) (x = 0), tepa (tepa = tris(2-(2-pyridyl)ethyl)amine) (x = 0)) which contain tripodal tetradentate pyridyl ligands and chelated carbonate ligands are reported. The complexes display different colors in both the solid state and solution, which can be rationalized in terms of the different ligand fields exerted by the tripodal ligands. Electrochemical data show that [Co(tepa)(O(2)CO)](+) is the easiest of the four complexes to reduce, and the variation in E(red.) values across the series of complexes can also be explained in terms of the different ligand fields exerted by the tripodal ligands, as can the (59)Co NMR data which show a chemical shift range of over 2000 ppm for the four complexes. [Co(pmea)(O(2)CO)](+) is fluxional in aqueous solution, and VT NMR spectroscopy ((1)H and (13)C) in DMF-d(7) (DMF = dimethylformamide) over the temperature range -25.0 to 75.0 degrees C are consistent with inversion of the unique six-membered chelate ring. This process shows a substantial activation barrier (DeltaG(#) = 58 kJ mol(-1)). The crystal structures of [Co(tpa)(O(2)CO)]ClO(4)xH(2)O, [Co(pmea)(O(2)CO)]ClO(4).3H(2)O, [Co(pmap)(O(2)CO)]ClO(4), and [Co(tepa)(O(2)CO)]ClO(4) are reported, and the complexes containing the asymmetric tripodal ligands pmea and pmap both crystallize as the 6-isomer. The carbonate complexes all show remarkable stability in 6 M HCl solution, with [Co(pmap)(O(2)CO)](+) showing essentially no change in its UV/vis spectrum over 4 h in this medium. The chelated bicarbonate complexes [Co(pmea)(O(2)COH)]ZnCl(4), [Co(pmap)(O(2)COH)][Co(pmap)(O(2)CO)](ClO(4))(3), [Co(pmap)(O(2)COH)]ZnCl(4)xH(2)O, and [Co(pmap(O(2)COH)]ZnBr(4)x2H(2)O can be isolated from acidic aqueous solution, and the crystal structure of [Co(pmap)(O(2)COH)]ZnCl(4)x3H(2)O is reported. The stability of the carbonate complexes in acid is explained by analysis of the crystallographic data for these, and other slow to hydrolyze chelated carbonate complexes, which show that the endo (coordinated) oxygen atoms are significantly hindered by atoms on the ancillary ligands, in contrast to complexes such as [Co(L)(O(2)CO)](+) (L = (NH(3))(4), (en)(2), tren, and nta), which undergo rapid acid hydrolysis and which show no such steric hindrance.  相似文献   

3.
The reaction of [Cu(L)(H(2)O)](2+) with an excess of thiosulfate in aqueous solution produces a blue to green color change indicative of thiosulfate coordination to Cu(II) [L = tren, Bz(3)tren, Me(6)tren, and Me(3)tren; tren = tris(2-aminoethyl)amine, Bz(3)tren = tris(2-benzylaminoethyl)amine, Me(6)tren = tris(2,2-dimethylaminoethyl)amine, and Me(3)tren = tris(2-methylaminoethyl)amine]. In excess thiosulfate, only [Cu(Me(6)tren)(H(2)O)](2+) promotes the oxidation of thiosulfate to polythionates. Products suitable for single-crystal X-ray diffraction analyses were obtained for three thiosulfate complexes, namely, [Cu(tren)(S(2)O(3))].H(2)O, [Cu(Bz(3)tren)(S(2)O(3))].MeOH, and (H(3)Me(3)tren)[Cu(Me(3)tren)(S(2)O(3))](2)(ClO(4))(3). Isolation of [Cu(Me(6)tren)(S(2)O(3))] was prevented by its reactivity. In each complex, the copper(II) center is found in a trigonal bipyramidal (TBP) geometry consisting of four amine nitrogen atoms, with the bridgehead nitrogen in an axial position and an S-bound thiosulfate in the other axial site. Each structure exhibits H bonding (involving the amine ligand, thiosulfate, and solvent molecule, if present), forming either 2D sheets or 1D chains. The structure of [Cu(Me(3)tren)(MeCN)](ClO(4))(2) was also determined for comparison since no structures of mononuclear Cu(II)-Me(3)tren complexes have been reported. The thiosulfate binding constant was determined spectrophotometrically for each Cu(II)-amine complex. Three complexes yielded the highest values reported to date [K(f) = (1.82 +/- 0.09) x 10(3) M(-1) for tren, (4.30 +/- 0.21) x 10(4) M(-1) for Bz(3)tren, and (2.13 +/- 0.05) x 10(3) M(-1) for Me(3)tren], while for Me(6)tren, the binding constant was much smaller (40 +/- 10 M(-1)).  相似文献   

4.
The electronic structure of solid compounds -UO3, Cs2UO2CL4, UO2F4 and complexes UO 2 2+ and UO2(NO3)2 · 2H2O has been studied by the cluster discrete variational DV X method in Dirac-Slater and Hartree-Fock-Slater approximation. The analysis of relativistic effects in the electronic structure of uranyl compounds was based on the comparison of non-relativistic and relativistic DV results. The interpretation of X-ray photoelectron spectra of -UO3 and Cs2UO2Cl4 basing on the MO model is given. The various electronic states contributions to the chemical bonding in uranyl compounds are investigated.  相似文献   

5.
B3LYP* functionals were used to model the sixteen iron(II) (1A, LS and 5T, HS) and iron(III) (2T, LS and 6A, HS) complexes of the 1:3 Schiff base condensate of tris(2-aminoethyl)amine and imidazole-4-carboxaldehyde, H3L1, and its deprotonated forms, [H2L1]1-, [HL1]2-, and [L1]3-. This ligand system is unusual in that [FeH3L1]3+, [FeH3L1]2+ and [FeL1]- all exhibit a spin crossover between 100-300 K. This makes these complexes ideal for a hybrid DFT computational approach and provides an opportunity to refine the value of the exact exchange admixture parameter, c3, and to predict properties of partially protonated complexes that are not experimentally available. The accepted value of 0.20 is larger than the value of approximately 0.13 that was found to best reproduce experimental data in terms of spin state predictions. With iron(III) B3LYP calculations showed that all of the complexes were low spin at 298 K with the exception of [FeH3L1]3+ which is spin crossover in agreement with experimental results. It was also shown for iron(III) that the ligand field increased as the number of protons decreased. In contrast all of the iron(II) complexes were close to the spin crossover region regardless of protonation state. Experimental structures are fairly well modeled by this system in regard to the key structural indicators of spin state, which are the bite and trans angles. The calculated iron to nitrogen atom distances are always larger in the high spin form than the low spin form but all iron to nitrogen bond distances are larger than the experimental values. In general non-bonded interactions are not well modeled by this methodology.  相似文献   

6.
B3LYP* functionals were used to model the sixteen iron(II) (1A, LS and 5T, HS) and iron(III) (2T, LS and 6A, HS) complexes of the 1 : 3 Schiff base condensate of tris(2-aminoethyl)amine and imidazole-4-carboxaldehyde, H3L1, and its deprotonated forms, [H2L1]1-, [HL1]2-, and [L1]3-. This ligand system is unusual in that [FeH3L1]3+, [FeH3L1]2+ and [FeL1]- all exhibit a spin crossover between 100-300 K. This makes these complexes ideal for a hybrid DFT computational approach and provides an opportunity to refine the value of the exact exchange admixture parameter, c3, and to predict properties of partially protonated complexes that are not experimentally available. The accepted value of 0.20 is larger than the value of approximately 0.13 that was found to best reproduce experimental data in terms of spin state predictions. With iron(III) B3LYP calculations showed that all of the complexes were low spin at 298 K with the exception of [FeH3L1]3+ which is spin crossover in agreement with experimental results. It was also shown for iron(III) that the ligand field increased as the number of protons decreased.In contrast all of the iron(II) complexes were close to the spin crossover region regardless of protonation state. Experimental structures are fairly well modeled by this system in regard to the key structural indicators of spin state, which are the bite and trans angles. The calculated iron to nitrogen atom distances are always larger in the high spin form than the low spin form but all iron to nitrogen bond distances are larger than the experimental values. In general non-bonded interactions are not well modeled by this methodology.  相似文献   

7.
采用密度泛函理论(DFT),在PBE0/6-31+G(d)-LANL2DZ水平下优化了Ni和Pd两种金属配合物A和B的基态几何构型,并在相同水平下进行了频率分析以确认都是实频.利用含时密度泛函理论(TD-DFT)和极化连续介质模型(PCM),在TD-PBE0/6-31+G(d)-LANL2DZ水平下,计算了配合物A和B在二氯甲烷溶剂中的电子结构和吸收光谱.计算结果表明,与中心配位原子Pd相比,Ni较强的配位作用使配合物A具有较小的HOMO-LUMO能级差,从而导致配合物A的最大吸收波长发生红移.  相似文献   

8.
采用密度泛函理论在PBE0/6-31+G(d)-LANL2DZ水平下优化了两种8-羟基喹啉锌配合物的基态几何构型,并在相同水平下进行了频率分析以确认稳定点的性质.根据基态优化的构型,在TD-PBE0/6-31+G(d)-LANL2DZ水平下,采用极化连续介质模型(PCM)计算了甲醇溶剂中配合物的电子结构和电子吸收光谱.计算结果表明,配合物B中8-羟基喹啉2号位取代基蒽较大的π共轭作用使其具有较小的HOMO-LUMO能级差,从而使配合物B的最大吸收波长发生了红移现象.  相似文献   

9.
10.
We have synthesized the mono, di-, and tri-alpha-fluoro ligands in the tris(2-pyridylmethyl)amine (TPA) series, namely, FTPA, F(2)TPA and F(3)TPA, respectively. Fluorination at the alpha-position of these nitrogen-containing tripods shifts the oxidation potential of the ligand by 45-70 mV per added fluorine atom. The crystal structures of the dichloroiron(II) complexes with FTPA and F(2)TPA reveal that the iron center lies in a distorted octahedral geometry comparable to that already found in TPAFeCl(2). All spectroscopic data indicate that the geometry is retained in solution. These three isostructural complexes all react with molecular dioxygen to yield stable mu-oxodiiron(III) complexes. Crystal structure analyses are reported for each of these three mu-oxo compounds. With TPA, a symmetrical structure is obtained for a dicationic compound with the tripod coordinated in the kappa(4)N coordination mode. With FTPA, the compound is a neutral mu-oxodiiron(III) complex with a kappa(3)N coordination mode of the ligand. Oxygenation of the F(2)TPA complex gave a neutral unsymmetrical compound, the structure of which is reminiscent of that already found with the trifluorinated ligand. On reduction, all mu-oxodiiron(III) complexes revert to the starting iron(II) species. The oxygenation reaction parallels the well-known formation of mu-oxo derivatives from dioxygen in the chemistry of porphyrins reported almost three decades ago. The striking feature of the series of iron(II) precursors is the effect of the ligand on the kinetics of oxygenation of the complexes. Whereas the parent complex undergoes 90 % conversion over 40 h, the monofluorinated ligand provides a complex that has fully reacted after 30 h, whereas the reaction time for the complex with the difluorinated ligand is only 10 h. Analysis of the spectroscopic data reveals that formation of the mu-oxo complexes proceeds in two distinct reversible kinetic steps with k(1) approximately 10 k(2). For TPAFeCl(2) and FTPAFeCl(2) only small variations in the k(1) and k(2) values are observed. By contrast, F(2)TPAFeCl(2) exhibits k(1) and k(2) values that are ten times higher. These differences in kinetics are interpreted in the light of structural and electronic effects, especially the Lewis acidity at the metal center. Our results suggest coordination of dioxygen as an initial step in the process leading to formation of mu-oxodiiron(III) compounds, by contrast with an unlikely outer-sphere reduction of dioxygen, which generally occurs at negative potentials.  相似文献   

11.
Reactions of Schiff bases (H2apahR) derived from acetophenone and acid hydrazides, triethylamine and [Ru(PPh3)3Cl2] (1:2:1 mole ratio) in methanol provide cyclometallated ruthenium(III) complexes of formula trans-[Ru(apahR)(PPh3)2Cl] in 74–81% yields. The complexes have been characterized by elemental analysis, magnetic susceptibility, spectroscopic (infrared, electronic and EPR) and electrochemical measurements. X-ray crystal structures of two representative complexes have been determined. In each complex, the metal centre is in distorted octahedral CNOClP2 coordination sphere assembled by the C,N,O-donor meridionally spanning apahR2?, the chloride and the two mutually trans-oriented PPh3 molecules. All the complexes are one-electron paramagnetic (μeff. = 1.85–1.98 μB) and display rhombic EPR spectra in frozen (120 K) dichloromethane-toluene (1:1) solution. Electronic spectra of the complexes display several absorptions within 470–270 nm due to ligand-to-metal charge transfer and ligand centred transitions. The complexes are redox active and display a Ru(III)  Ru(II) reduction and a Ru(III)  Ru(IV) oxidation in the potential ranges ?0.66 to ?0.70 V and 0.75 to 0.80 V (vs. Ag/AgCl), respectively.  相似文献   

12.
The syntheses and structural elucidations of three different cobalt complexes of m-benziphthalocyanine are reported; both Co(II) and Co(III) complexes can be generated, and the ring undergoes partial oxidation upon metalation with Co(OAc)2x4H2O.  相似文献   

13.
The geometries, spectroscopic and electronic structures properties of a series of heteroleptic phosphorescent Ir(III) complexes including N981, N982, N983, N984 have been characterized by density functional theory calculations. The excited‐state properties of the Ir(III) complexes have been characterized by CIS method. The ground‐ and excited‐state geometries were optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. By using the time‐dependent density functional theory method, the absorption and phosphorescence spectra were calculated based on the optimized ground‐ and excited‐state geometries, respectively. The results show that the absorption and emission data agree well with the corresponding experimental results. The calculated results also revealed that the nature of the substituent at the 4‐position of the pyridyl moiety can influence the distributions of HOMO and LUMO and their energies. In addition, the charge transport quality has been estimated approximately by the calculated reorganization energy (λ). Our result also indicates that the positions of the substitute groups not only change the transition characters but also affect the charge transfer rate and balance, and complex N982 is a very good charge transfer material for green OLEDs. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

14.
《印度化学会志》2021,98(10):100168
The three new Cobalt(II) complexes [Co(L1)2(H2O)2] (1), [Co(L2)2(H2O)2] (2), and [Co(L3)2(H2O)2] (3) have been synthesized by interaction of acyl pyrazolone ligands, 4-(4-chlorobenzoyl)3-methyl1-phenyl1H-pyrazole5(4H)-one (HL1), 4-(4-chlorobenzoyl)1-(3-chlorophenyl)3-methyl1H-pyrazole5(4H)-one (HL2) and 5-methyl4-(4-methylbenzoyl)2-phenyl2,4-dihydro3H-pyrazole3-one (HL3) with CoCl2.6H2O. The complexes were screened using FTIR, UV–Vis, TGA, and Single Crystal X-ray diffraction spectroscopic techniques. A relative study of the ligands’ FTIR spectra and their metal complexes reveal the formation, sifting, and disappearance of several bands during complexation. Other interpretations stipulated that these three complexes are mononuclear and exhibited octahedral geometry around Co2+.Triclinic crystal system, Distortion in Octahedral geometry, and Intermolecular hydrogen bonding confirmed by Single-crystal XRD analysis of [Co(L3)2(EtOH)2] complex.  相似文献   

15.
The transformation of methylglyoxal and of 1,3–dihydroxyacetone and glyceraldehyde into lactic acid can be catalyzed by cis- tetraaminediaquarhodium(III) complexes of ethane-1,2–diamine and of the macrocyclic racemic 5,5,7,12,12,14–hexamethyl-1,4,8,11– tetraazacyclotetradecane ligand. The detailed stoichiometry of this process has been investigated by isotopic labelling studies and 1H and 13C-n.m.r. spectroscopy.The suggested mechanism of the methylglyoxal transformation process involves bidentate substrate coordination, followed by an intramolecular 1,2–hydride shift in a resonance stabilized carbocation. The transformations of 1,3–dihydroxyacetone and glyceraldehyde are stoichiometrically more complicated, and rhodium(III) catalyzed conversion of 1,3–dihydroxyacetone into glyceraldehyde is observed. Ultimately both substrates are converted into coordinated lactate in which one hydrogen atom in the methyl group originates from the solvent water.  相似文献   

16.
The average magnetic susceptibility (1.2-100 K) and magnetisation (100–15000 Oe at 4.2 K) of two perchlorato manganese(III) porphyrins establish them to be high-spin, in contrast to the “anomalous” behaviour of analogous iron(III) porphyrins. An explanation of the origin of the zero-field splitting in high-spin manganese(III) porphyrins is presented.  相似文献   

17.
The electronic structure of hexanuclear Mn(II,III) pivalate complexes with tetrahydrofuran and isonicotinamide are studied by X-ray photoelectron spectroscopy and X-ray emission spectroscopy. It is shown that when isonicotinamide substitutes for tetrahydrofuran the spin state of manganese ions is retained; the electron density increases on the manganese and oxygen atoms of the [Mn6(O)2Piv10] core.  相似文献   

18.
19.
[M(SRaaiNR′)Cl3] (M = Rh(III), Ir(III) and SRaaiNR′ = 1-alkyl-2-{(o-thioalkyl)phenylazo}imidazole) complexes are described in this article. The single crystal X-ray structure of one of the complexes, [Rh(SMeaaiNEt)Cl3] (3b), shows a tridentate chelation of SMeaaiNEt via N(imidazole), N(azo) and S(thioether) donor centres. Spectral characterization has been done by IR, UV–Vis and 1H NMR data. The electronic structure, redox properties and spectra are well supported by DFT and TDDFT computation on the complexes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号