首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is the second article in a three-part series on the construction of 3-node, 9-dof membrane elements with normal-to-its-plane rotational freedoms (the so-called drilling freedoms) using parametrized variational principles. In this part, one such element is derived within the context of the assumed natural deviatoric strain (ANDES) formulation. The higher-order strains are obtained by constructing three parallel-to-sides pure-bending modes from which natural strains are obtained at the corner points and interpolated over the element. To attain rank sufficiency, an additional higher-order “torsional” mode, corresponding to equal hierarchical rotations at each corner with all other motions precluded, is incorporated. The resulting formulation has five free parameters. When these parameters are optimized against pure bending by energy balance methods, the resulting element is found to coalesce with the optimal EFF element derived in Part I. Numerical integration as a strain filtering device is found to play a key role in this achievement.  相似文献   

2.
This paper completes a three-part series on the formulation of 3-node, 9-dof membrane triangles with corner drilling freedoms based on parametrized variational principles. The first four sections cover element implementation details including determination of optimal parameters and treatment of distributed loads. Then three elements of this type, labeled ALL, FF and EFF-ANDES, are tested on standard plane stress problems. ALL represents numerically integrated versions of Allman's 1988 triangle; FF is based on the free formulation triangle presented by Bergan and Felippa in 1985; and EFF-ANDES represent two different formulations of the optimal triangle derived in Parts I and II. The numerical studies indicate that the ALL, FF and EFF-ANDES elements are comparable in accuracy for elements of unitary aspect ratios. The ALL elements are found to stiffen rapidly in inplane bending for high aspect ratios, whereas the FF and EFF elements maintain accuracy. The EFF and ANDES implementations have a moderate edge in formation speed over the FF.  相似文献   

3.
A simple way to make the closed forms stiffness matrix of macro triangle elements is proposed through the individual element test and the computational algebra system in this paper. The newly developed element consists of three constant strain triangles, which only satisfy the convergence conditions according to the individual element test. Computational algebra system MAPLE and the free formulation framework are used to combine the stiffness matrix with the free parameters in terms of the algebraic symbols. The assembly of three constant strain triangles produces the linear strain modes in the resulted macro elements. The rigid body modes and constant strain modes of elements and the newly produced linear strain modes of the macro element are systematically assembled in the basic stiffness and the higher order stiffness in the free formulation procedure. The parameter of the decomposed higher order stiffness was tuned through the bending test. The results of numerical examples show the advantages of the proposed macro element in the distorted mesh and elements with the high aspect ratio.  相似文献   

4.
Dieter Legner  Sven Klinkel  Werner Wagner 《PAMM》2008,8(1):10303-10304
This contribution is concerned with a piezoelectric shell formulation. The present shell element has four nodes and bilinear interpolation functions. The nodal degrees of freedom are displacements, rotations and the electric potential on top and bottom of the shell. A 3D–material law is incorporated. In case of bending dominated problems incompatible approximation functions of the electrical and mechanical fields cause incorrect results. This effect occurs in standard element formulations, where the mechanical and electrical degrees of freedom are approximated with lowest order interpolation functions. In order to overcome this problem a mixed multi–field variational approach is introduced. It allows for approximations of the electric field and the strains independent of the bilinear interpolation functions. A quadratic approach for the shear strains and the electric field is proposed through the shell thickness. This leads to well balanced approximation functions regarding coupling of electrical and mechanical fields. A numerical example illustrates the more precise results in contrast to standard elements. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
A simple formulation of two triangular membrane elements is implemented similar to that of the generalized conforming plate bending element. The triangle has nine degrees of freedom, namely, six translations and three rigid rotations at the vertexes. As being the generalized conforming elements, they pass the patch test for arbitrary geometry, therefore the convergence to exact solution with consistent mesh refinement may be assured. Numerical results of test problems reveal that the performance of the present elements is desirable.  相似文献   

6.
A novel singular superelement (SSE) formulation has been developed to overcome the loss of accuracy encountered when applying the standard finite element schemes to two-dimensional elliptic problems possessing a singularity on the boundary arising from an abrupt change of boundary conditions or a reentrant corner. The SSE consists of an inner region over which the known analytic form of the solution in the vicinity of the singular point is utilized, and a transition region in which blending functions are used to provide a smooth transition to the usual linear or quadratic isoparametric elements used over the remainder of the domain. Solution of the finite element equations yield directly the coefficients of the asymptotic series, known as the flux/stress intensity factors in linear heat transfer or elasticity theories, respectively. Numerical examples using the SSE for the Laplace equation and for computing the stress intensity factors in the linear theory of elasticity are given, demonstrating that accurate results can be attained for a moderate computational effort.  相似文献   

7.
This contribution is concerned with mixed finite element formulations for modeling piezoelectric beam and shell structures. Due to the electromechanical coupling, specific deformation modes are joined with electric field components. In bending dominated problems incompatible approximation functions of these fields cause incorrect results. These effects occur in standard finite element formulations, where interpolation functions of lowest order are used. A mixed variational approach is introduced to overcome these problems. The mixed formulation allows for a consistent approximation of the electromechanical coupled problem. It utilizes six independent fields and could be derived from a Hu-Washizu variational principle. Displacements, rotations and the electric potential are employed as nodal degrees of freedom. According to the Timoshenko theory (beam) and the Reissner-Mindlin theory (shell), the formulations account for constant transversal shear strains. To incorporate three dimensional constitutive relations all transversal components of the electric field and the strain field are enriched by mixed finite element interpolations. Thus the complete piezoelectric coupling is appropriately captured. The common assumption of vanishing transversal stress and dielectric displacement components is enforced in an integral sense. Some numerical examples will demonstrate the capability of the presented finite element formulation. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
对一般非协调有限元,目前采用最多的两种方法是罚函数法和混合、杂交法.前一种方法总能保证收敛,但精度差,条件数和稀疏性不好;后一种方法则要满足“秩条件”才能保证收敛,故单元的构造受到很大的限制.本文提出把这两种方法结合一起的有限元方法——混合杂交罚函数法.从理论上严格证明了(在非常一般的条件下)这种新方法总是收敛的,并且其精度、条件数以及稀疏性等皆与协调元相同,也就是说都是最优的. 最后应用这一方法具体构造了一个新的九自由度任意三角形弯板单元(每个顶点给三个自由度——一个位移和两个转角),其单元刚度矩阵计算公式与旧的九自由度三角形弯板单元的计算公式相差不多.但它对任意几何形状的平板都收敛于真解,如果真解u∈H3的话,它的三个弯矩具有一阶精度,位移及两个转角均具有二阶精度.  相似文献   

9.
10.
Part basis (wedge) functions are constructed for plane triangularelements with two straight and one curved side, using ideasfrom three dimensional geometry. Such elements are desirablefor regions with curved boundaries or interfaces. Lagrange interpolatingfunctions which are in turn (i) linear, (ii) quadratic, and(iii) cubic along the straight sides of the triangle are considered.Curved elements which had previously been dealt with using isoparametricco-ordinates appear as special cases of this more general geometricaltreatment. The ideas can be extended in a straightforward mannerto deal with tetrahedral elements with three plane and one curvedsurface.  相似文献   

11.
This paper deals with the linear free vibration analysis of Bernoulli–Euler and Rayleigh curved beams using isogeometric approach. The geometry of the beam as well as the displacement field are defined using the NURBS basis functions which present the basic concept of the isogeometric analysis. A novel approach based on the fundamental relations of the differential geometry and Cauchy continuum beam model is presented and applied to derive the stiffness and consistent mass matrices of the corresponding spatial curved beam element. In the Bernoulli–Euler beam element only translational and torsional inertia are taken into account, while the Rayleigh beam element takes all inertial terms into consideration. Due to their formulation, isogeometric beam elements can be used for the dynamic analysis of spatial curved beams. Several illustrative examples have been chosen in order to check the convergence and accuracy of the proposed method. The results have been compared with the available data from the literature as well as with the finite element solutions.  相似文献   

12.
Contact analyses are being performed in various engineering applications. Here, like in most other fields, FE codes are based on low order elements using linear or quadratic shape functions. The intention of this paper is to show that finite elements with shape functions of high polynomial degree (p-FEM) are a very attractive alternative to low order elements, even for computational contact mechanics. One of the advantages is the possibility to enhance the element formulation with the blending function method in order to accurately discretize the given geometry, which leads in combination with high convergence rates to very efficient computations. In order to solve the problem of frictionless contact, a penalty formulation is applied in this work. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
三角形单元协调与非协调位移的能量正交关系   总被引:1,自引:0,他引:1  
基于组合稳定化变分原理,周天孝提出的组合杂交法是绝对收敛和稳定的,它给出了一种系统化的增强应力/应变方法,并建立了一簇低阶仿射等价的n-cube(n=2,3)单元。本文论证了单元上应力插值为线性,位移插值为协调线性部分和非协调二次部分之和的三角形组合杂交单元其协调部分与非协调部分的能量正交关系,进而得到此三角形单元刚度矩阵等同于协调的三角形线性元刚度矩阵,即非协调部分无应变增强特性。  相似文献   

14.
A family of continuous piecewise linear finite elements for thin plate problems is presented. We use standard linear interpolation of the deflection field to reconstruct a discontinuous piecewise quadratic deflection field. This allows us to use discontinuous Galerkin methods for the Kirchhoff–Love plate equation. Three example reconstructions of quadratic functions from linear interpolation triangles are presented: a reconstruction using Morley basis functions, a fully quadratic reconstruction, and a more general least squares approach to a fully quadratic reconstruction. The Morley reconstruction is shown to be equivalent to the basic plate triangle (BPT). Given a condition on the reconstruction operator, a priori error estimates are proved in energy norm and L 2 norm. Numerical results indicate that the Morley reconstruction/BPT does not converge on unstructured meshes while the fully quadratic reconstruction show optimal convergence.  相似文献   

15.
A stabilized mixed finite element formulation for four-noded tetrahedral elements is introduced for robustly solving small and large deformation problems. The uniqueness of the formulation lies within the fact that it is general in that it can be applied to any type of material model without requiring specialized geometric or material parameters. To overcome the problem of volumetric locking, a mixed element formulation that utilizes linear displacement and pressure fields was implemented. The stabilization is provided by enhancing the rate of deformation tensor with a term derived using a bubble function approach. The element was implemented through a user-programmable element of the commercial finite element software ANSYS. Using the ANSYS platform, the performance of the element was evaluated by comparing the predicted results with those obtained using mixed quadratic tetrahedral elements and hexahedral elements with a B-bar formulation. Based on the quality of the results, the new element formulation shows significant potential for use in simulating complex engineering processes.  相似文献   

16.
庞之垣 《计算数学》1983,5(3):318-325
[1]—[4]均研究本问题.[1]采用体积坐标给出了基函数的显式表达,较之[2]—[4]省去了求大型逆矩阵一步手续.我们知道,对有限元法来说,一个插值函数的光滑性和逼近度具有很重要的意义.但对16个自由度的四面体元,他们给出的插值只能保证相  相似文献   

17.
Katrin Schulz  Sven Klinkel 《PAMM》2007,7(1):4040027-4040028
A finite element formulation to analyze piezoelectric shell problems is presented. A reference surface of the shell is modelled with a four node element. Each node possesses six mechanical degrees of freedom, three displacements and three rotations, and one electric degree of freedom, which is the difference of the electric potential in thickness direction. The formulation is based on the mixed field variational principle of Hu-Washizu. The independent fields are displacements u , electric potential φ, strains E , electric field E , stresses S and dielectric displacements D . The mixed formulation allows an interpolation of the strains and the electric field in thickness direction. Accordingly a three-dimensional material law is incorporated in the variational formulation. It is remarked that no simplification regarding the constitutive law is assumed. The formulation allows the consideration of arbitrary constitutive relations. The normal zero stress condition and the normal zero dielectric displacement condition are enforced by the independent stress and dielectric displacement fields. They are defined as zero in thickness direction. The present shell element fulfills the important patch tests: the in-plane, bending and shear test. Some numerical examples demonstrate the applicability of the present piezoelectric shell element. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Katrin Schulz  Sven Klinkel  Werner Wagner 《PAMM》2008,8(1):10337-10338
A geometrically nonlinear finite element formulation to analyze piezoelectric shell structures is presented. The formulation is based on the mixed field variational functional of Hu–Washizu. Within this variational principle the independent fields are displacements, electric potential, strains, electric field, stresses and dielectric displacements. The mixed formulation allows an interpolation of the strains and the electric field through the shell thickness, which is an essential advantage when using a three dimensional material law. It is remarked that no simplification regarding the constitutive relation is assumed. The normal zero stress condition and the normal zero dielectric displacement condition are enforced by the independent resultant stress and resultant dielectric displacement fields. The shell structure is modeled by a reference surface with a four node element. Each node possesses six mechanical degrees of freedom, three displacements and three rotations, and one electrical degree of freedom, which is the difference of the electric potential through the shell thickness. The developed mixed hybrid shell element fulfills the in–plane, bending and shear patch tests, which have been adopted for coupled field problems. A numerical investigation of a smart antenna demonstrates the applicability of the piezoelectric shell element under the consideration of geometrical nonlinearity. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
张贵明  孙萍  罗振东 《计算数学》2010,32(3):327-336
本文研究二阶椭圆方程基于泡函数的稳定化的二阶混合有限元格式,通过消去泡函数导出一种自由度很少的简化的稳定化的二阶混合有限元格式, 误差分析表明消去泡函数的简化格式与带有泡函数的格式具有相同的精度而可以节省6Np个自由度(其中Np三角形剖分中的顶点数目).    相似文献   

20.
Thin piezoelectric laminates are used for a wide range of technical applications. A four-node piezoelectric shell element is presented to analyse such structures effectively. In case of bending dominated problems incompatible approximation functions of the electrical and mechanical fields cause incorrect results. In order to overcome this problem the finite element formulation is based on a mixed variational principle implying six independent fields: displacements, electric potential, strains, electric field, mechanical stresses and dielectric displacements. This allows for an interpolation of the strains and the electric field in thickness direction independent of the bilinear interpolation functions. A piecewise quadratic approach for the shear strains in thickness direction and the corresponding electric field is proposed for arbitrarily layered shells. Regarding coupling of electrical and mechanical fields this yields to an appropriate balance of the approximation functions. Numerical examples show more precise results in contrast to standard elements with lowest order interpolation functions. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号