首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Auditory scene analysis involves the simultaneous grouping and parsing of acoustic data into separate mental representations (i.e., objects). Over two experiments, we examined the sequence of neural processes underlying concurrent sound segregation by means of recording of human middle latency auditory evoked responses. Participants were presented with complex sounds comprising several harmonics, one of which could be mistuned such that it was not an integer multiple of the fundamental frequency. In both experiments, Na (approximately 22 ms) and Pa (approximately 32 ms) waves were reliably generated for all classes of stimuli. For stimuli with a fundamental frequency of 200 Hz, the mean Pa amplitude was significantly larger when the third harmonic was mistuned by 16% of its original value, relative to when it was tuned. The enhanced Pa amplitude was related to an increased likelihood in reporting the presence of concurrent auditory objects. Our results are consistent with a low-level stage of auditory scene analysis in which acoustic properties such as mistuning act as preattentive segregation cues that can subsequently lead to the perception of multiple auditory objects.  相似文献   

2.
Sets of regularly repeating auditory stimuli elicit unique perceptions; listeners are able to identify specific temporal patterns. Some temporal patterns are unambiguous (only one pattern can be perceived), while others are ambiguous (numerous patterns can be detected). While the psychophysical properties of such percepts have been well studied, little is known about the underlying neurological bases of temporal pattern perception. In this experiment, the role of adaptation in temporal pattern perception is examined by studying neural responses in four cats to a temporal pattern that is perceptually unambiguous and one that is perceptually ambiguous. Measurements were made of the whole-nerve action potential, the auditory brainstem response, and potentials from the surface of the primary auditory cortex. The adaptation patterns corresponded with the perceptual organization of temporal patterns in humans at all levels of the nervous system studied.  相似文献   

3.
Vocal recognition is common among songbirds, and provides an excellent model system to study the perceptual and neurobiological mechanisms for processing natural vocal communication signals. Male European starlings, a species of songbird, learn to recognize the songs of multiple conspecific males by attending to stereotyped acoustic patterns, and these learned patterns elicit selective neuronal responses in auditory forebrain neurons. The present study investigates the perceptual grouping of spectrotemporal acoustic patterns in starling song at multiple temporal scales. The results show that permutations in sequencing of submotif acoustic features have significant effects on song recognition, and that these effects are specific to songs that comprise learned motifs. The observations suggest that (1) motifs form auditory objects embedded in a hierarchy of acoustic patterns, (2) that object-based song perception emerges without explicit reinforcement, and (3) that multiple temporal scales within the acoustic pattern hierarchy convey information about the individual identity of the singer. The authors discuss the results in the context of auditory object formation and talker recognition.  相似文献   

4.
We present a numerical study of a neural network model with a low level of activity. Our findings confirm a previous replica-symmetric mean-field analysis which predicts a much higher storage capacity compared with the standard Hopfield model. Indeed our estimate of the critical storage ratio of the model lies above that yielded analytically. We also obtain good agreement with an analytical investigation of the dynamics of the model.  相似文献   

5.
The problem of developing a neural network with a given pattern of the state sequence is considered. A neural network structure and an algorithm of forming its bond matrix which lead to an approximate but robust solution of the problem are proposed and discussed. Limiting characteristics of the serviceability of the proposed structure are studied. Various methods of visualizing dynamic processes in a neural network are compared. Possible applications of the results obtained for interpretation of neurophysiological data and in neuroinformatics systems are discussed.Institute of Neurocybernetics, State University, Rostov-on-Don. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 37, No. 9, pp. 1065–1076, September, 1994.  相似文献   

6.
The ability to separate simultaneous auditory objects is crucial to infant auditory development. Music in particular relies on the ability to separate musical notes, chords, and melodic lines. Little research addresses how infants process simultaneous sounds. The present study used a conditioned head-turn procedure to examine whether 6-month-old infants are able to discriminate a complex tone (240 Hz, 500 ms, six harmonics in random phase with a 6 dB roll-off per octave) from a version with the third harmonic mistuned. Adults perceive such stimuli as containing two auditory objects, one with the pitch of the mistuned harmonic and the other with pitch corresponding to the fundamental of the complex tone. Adult thresholds were between 1% and 2% mistuning. Infants performed above chance levels for 8%, 6%, and 4% mistunings, with no significant difference between conditions. However, performance was not significantly different from chance for 2% mistuning and significantly worse for 2% compared to all larger mistunings. These results indicate that 6-month-old infants are sensitive to violations of harmonic structure and suggest that they are able to separate two simultaneously sounding objects.  相似文献   

7.
The neural network has been introduced into the reconstruction of the complex object based on fringe projection. In this method, the neural network with powerful property of approximation is used to get the continuous approximate function of a discrete fringe pattern captured by an image frame grabber. The depth-related phase of the measured object modulated into the fringe pattern can be demodulated by dealing with the approximate function. Compared with the Fourier transform profilometry (FTP), in the network method, one deformed fringe pattern is needed to reconstruct the tested object, and a high spatial resolution is maintained for no filtering process. Therefore, this method performs better than FTP in the measurement of the complex object. Moreover, the network method is capable of demodulating more depth-related phase even in the case that the local shadow exists in the fringe pattern. Computer simulations and experiments validate the feasibility of this method.  相似文献   

8.
Both distortion product otoacoustic emissions (DPOAEs) and auditory steady-state responses (ASSRs) provide frequency-specific assessment of hearing. However, each method suffers from some restrictions. Hearing losses above 50 dB HL are not quantifiable using DPOAEs and their performance at frequencies below 1 kHz is limited, but their recording time is short. In contrast, ASSRs are a time-consuming method but have the ability to determine hearing thresholds in a wider range of frequencies and hearing losses. Thus, recording DPOAEs and ASSRs simultaneously at their adequate frequencies and levels could decrease the overall test time considerably. The goal of the present study was to develop a parameter-setting and test-protocol to measure DPOAEs and ASSRs binaurally and simultaneously at multiple frequencies. Ten normal-hearing and 23 hearing-impaired subjects participated in the study. The interaction of both responses when stimulated simultaneously at frequencies between 0.25 and 6 kHz was examined. Two limiting factors need to be kept. Frequency distance between ASSR carrier frequency f(c) and DPOAE primary tone f(2) needs to be at least 1.5 octaves, and DPOAEs may not be measured if the ASSR stimulus level is 70 dB SPL or above. There was a significant correlation between pure-tone and DPOAE/ASSR-thresholds in sensorineural hearing loss ears.  相似文献   

9.
Listeners are relatively good at estimating the true content of each physical source in a sound mixture in most everyday situations. However, if there is a spectrotemporal element that logically could belong to more than one object, the correct way to group that element can be ambiguous. Many psychoacoustic experiments have implicitly assumed that when a sound mixture contains ambiguous sound elements, the ambiguous elements "trade" between competing sources, such that the elements contribute more to one object in conditions when they contribute less to others. However, few studies have directly tested whether such trading occurs. While some studies found trading, trading failed in some recent studies in which spatial cues were manipulated to alter the perceptual organization. The current study extended this work by exploring whether trading occurs for similar sound mixtures when frequency content, rather than spatial cues, was manipulated to alter grouping. Unlike when spatial cues were manipulated, results are roughly consistent with trading. Together, results suggest that the degree to which trading is obeyed depends on how stimuli are manipulated to affect object formation.  相似文献   

10.
The physiological characteristics of auditory receptor fibers (ARFs) of crickets, a model system for studying auditory behaviors and their neural mechanisms, are investigated. Unlike auditory receptor neurons of many animals, cricket ARFs fall into three distinct populations based on characteristic frequency (CF) [Imaizumi and Pollack, J. Neurosci. 19, 1508-1516 (1999)]. Two of these have CFs similar to the frequency component of communication signals or of ultrasound produced by predators, and a third population has intermediate CF. Here, sound-amplitude coding by ARFs is examined to gain insights to how behaviorally relevant sounds are encoded by populations of receptor neurons. ARFs involved in acoustic communication comprise two distinct anatomical types, which also differ in physiological parameters (threshold, response slope, dynamic range, minimum latency, and sharpness of tuning). Thus, based on CF and anatomy, ARFs comprise four populations. Physiological parameters are diverse, but within each population they are systematically related to threshold. The details of these relationships differ among the four populations. These findings open the possibility that different ARF populations differ in functional organization.  相似文献   

11.

Background  

Tinnitus is an auditory sensation frequently following hearing loss. After cochlear injury, deafferented neurons become sensitive to neighbouring intact edge-frequencies, guiding an enhanced central representation of these frequencies. As psychoacoustical data [13] indicate enhanced frequency discrimination ability for edge-frequencies that may be related to a reorganization within the auditory cortex, the aim of the present study was twofold: 1) to search for abnormal auditory mismatch responses in tinnitus sufferers and 2) relate these to subjective indicators of tinnitus.  相似文献   

12.
13.
Ferromagnetic transition has generally been considered to involve only an ordering of magnetic moment with no change in the host crystal structure or symmetry, as evidenced by a wealth of crystal structure data from conventional X-ray diffractometry (XRD). However, the existence of magnetostriction in all known ferromagnetic systems indicates that the magnetic moment is coupled to the crystal lattice; hence there is a possibility that magnetic ordering may cause a change in crystal structure. With the development of high-resolution synchrotron XRD, more and more magnetic transitions have been found to be accompanied by simultaneous structural changes. In this article, we review our recent progress in understand- ing the structural change at a ferromagnetic transition, including synchrotron XRD evidence of structural changes at the ferromagnetic transition, a phenomenological theory of crystal structure changes accompanying ferromagnetic transitions, new insight into magnetic morphotropic phase boundaries (MPB) and so on. Two intriguing implications of non-centric symmetry in the ferromagnetic phase and the first-order nature of ferromagnetic transition are also discussed here. In short, this review is intended to give a self-consistent and logical account of structural change occurring simultaneously with a ferromagnetic transition, which may provide new insight for developing highly magneto-responsive materials.  相似文献   

14.
The segregation of concurrent vocal signals is an auditory processing task faced by all vocal species. To segregate concurrent signals, the auditory system must encode the spectral and temporal features of the fused waveforms such that at least one signal can be individually detected. In the plainfin midshipman fish (Porichthys notatus), the overlapping mate calls of neighboring males produce acoustic beats with amplitude and phase modulations at the difference frequencies (dF) between spectral components. Prior studies in midshipman have shown that midbrain neurons provide a combinatorial code of the temporal and spectral characteristics of beats via synchronization of spike bursts to dF and changes in spike rate and interspike intervals with changes in spectral composition. In the present study we examine the effects of changes in signal parameters of beats (overall intensity level and depth of modulation) on the spike train outputs of midbrain neurons. The observed changes in spike train parameters further support the hypothesis that midbrain neurons provide a combinatorial code of the spectral and temporal features of concurrent vocal signals.  相似文献   

15.

Background  

Primary auditory cortex (AI) neurons show qualitatively distinct response features to successive acoustic signals depending on the inter-stimulus intervals (ISI). Such ISI-dependent AI responses are believed to underlie, at least partially, categorical perception of click trains (elemental vs. fused quality) and stop consonant-vowel syllables (eg.,/da/-/ta/continuum).  相似文献   

16.
17.
Recent achievements in the isolation of macroscopic mechanical objects from a heat bath make it possible to implement quantum measurements with such systems. In this case, either a free mass or an oscillator can be used as a test object. The advantage of the first variant is in significantly longer relaxation times achieved for free masses. The advantage of the second variant is in the absence of restrictions on the limiting measurement accuracy associated with internal losses in the meter. This restriction can be bypassed, retaining a long relaxation time typical of free masses, if a test oscillator with a ponderomotive electromagnetic rigidity is used. Estimates show that the potential sensitivity of this test body for the modern level of technology may be considerably higher than the standard quantum limit.  相似文献   

18.
To discover the reasons for the failure in the performance of a neutron interferometer with a Fresnel biprism, proposed by Maier-Leibnitz and Springer, the experiments were repeated with a simple diffraction apparatus.We found that the distortion of the diffraction pattern only arises in incorrect adjustment of the probes or in bad probe edges. There is therefore no reason to introduce a special coherent inelastic scattering mechanism into theory as suggested by Landkammer. It is shown that the biprism can be advantageously substituted by a quartz thread surrounded by a D2O—H2O mixture.  相似文献   

19.
利用偏振技术识别人造目标   总被引:17,自引:1,他引:17  
孙玮  刘政凯  单列 《光学技术》2004,30(3):267-269
提出了一种利用目标的偏振信息识别人造目标的新型方法。利用自制的多波段偏振CCD地面实验装置获取目标的偏振图像,并提取其中的偏振信息。由于人造目标和自然目标的偏振特性上有较大差别,因而根据这些信息,通过较常规的图像处理手段,即可很好地识别出图像中的人造目标。实验证明,该方法识别自然背景下的人造目标是相当有效的。  相似文献   

20.
The performance of neural networks used as associative memory for uncorrelated patterns with prescribed mean activity is analyzed within the replica symmetric mean field theory. The optimal representation of the possible states of the neutrons, active or inactive, is found to depend on the mean activity. For activity equal one half Ising neurons and for low activities McCulloch-Pitts neurons are optimal. In this optimal representation the noise due to noncondensed patterns is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号