首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near-infrared laser spectroscopy is used to measure the 13C/12C isotope abundance ratio in gas phase carbon dioxide. The spectrometer, developed expressly for field applications, is based on a 2 μm distributed feedback diode laser in combination with sensitive wavelength modulation detection. It is characterized by a simplified optical layout, in which a single detector and associated electronics are used to probe absorptions of a pair of 13CO2 and 12CO2 lines, simultaneously in a sample, as well as a reference gas. For a careful investigation of the achievable precision and accuracy levels, we carried out a variety of laboratory tests on CO2 samples with different isotopic compositions, calibrated with respect to the international standard material by means of isotope ratio mass spectrometry. The 1-σ accuracy of the 13CO2/12CO2 determinations, reported in the so-called δ notation, is about 0.5‰ (including both statistical and systematic errors), for δ-values in the range from -30‰ to +20‰. We show that the major source of systematic errors is a consequence of the non-linearity of the Lambert–Beer absorption law, and can be corrected for to a very high degree of accuracy. PACS 42.62.Fi; 42.55.Px; 33.20.Ea  相似文献   

2.
We report on the design and laboratory performance of a portable infrared absorption spectrometer for the measurement of the isotopic ratio 13C:12C in CO2. The design relies on optical feedback cavity-enhanced absorption spectroscopy in the 2 μm spectral region to achieve optimal performance at ambient CO2 concentrations. The prototype instrument measures δ13C, relative to a standard calibration bottle, with a precision of ±0.7‰ for a 20-s integration time and with an automatic recalibration every 6 min. The absolute accuracy obtained is 0.9‰. The principal performance limitations are discussed along with improvements currently being implemented for the second generation instrument. PACS  42.62.Fi; 07.57.Ty; 33.20.Ea  相似文献   

3.
A prototype off-axis integrated cavity output spectrometer (OA-ICOS) utilizing two identical cavities together with a near-infrared (1.63 microm) external cavity tunable diode laser is described. The two-cavity design-one for a reference gas and one for a sample gas-takes advantage of classical double-beam infrared spectrometer characteristics in reducing uncertainties due to laser scan or power instabilities and major temperature variations by a factor of three or better compared with a single-cavity scheme. This is the first OA-ICOS instrument designed to determine 13C/12C and (18)O/(16)O ratios from CO2 rotation/vibration fine structure in three different combination bands. Preliminary results indicate that at 0.8 Hz a precision of 3.3 and 2.8 per thousand is obtained for delta13C and delta(18)O, respectively, over a period of 10 h and a pure CO2 gas sample at 26 hPa. By averaging 100 spectra over a subset of the data, we achieved a precision of 1.6 and 0.8 \permil\ for delta13C and delta(18)O, respectively.  相似文献   

4.
In this work we report on new optically pumped THz laser lines from deuterated formic acid (DCOOD). An isotopic 13CO2 laser was used for the first time as a pump source for this molecule, and a Fabry–Perot cavity was used as a THz laser resonator. Optoacoustic absorption spectra were used as a guide to search for new THz laser lines. We could observe six new laser lines in the range from 303.8 μm (0.987 THz) to 725.1 μm (0.413 THz). The lines were characterized according to wavelength, relative polarization, relative intensity, and optimum working pressure. The transferred lamb-dip technique was used to measure the frequency absorption transition for both of these laser lines. Furthermore, we also present a catalogue of all THz laser lines generated from DCOOD.  相似文献   

5.
The use of isotopic carbon dioxide lasers for determination of carbon (and oxygen) isotope ratios was first demonstrated in 1994. Since then a commercial device called LARA, has been manufactured and used for Helicobacter pylori breath tests using (13)C-labelled urea. The major advantages of the optogalvanic effect compared with other infrared absorption isotope ratio measurement techniques are its lack of optical background and its high sensitivity resulting from a signal gain proportional to laser power. Continuous normalisation using two cells, a standard and sample, lead to high accuracy as well as precision. Recent advances in continuous flow measurement of (13)C/(12)C ratios of CO(2) in air and extensions of the technique to (14)C, which can be analysed as a stable isotope, are described.  相似文献   

6.
The use of isotopic carbon dioxide lasers for determination of carbon (and oxygen) isotope ratios was first demonstrated in 1994. Since then a commercial device called LARA?, has been manufactured and used for Helicobacter pylori breath tests using 13C-labelled urea. The major advantages of the optogalvanic effect compared with other infrared absorption isotope ratio measurement techniques are its lack of optical background and its high sensitivity resulting from a signal gain proportional to laser power. Continuous normalisation using two cells, a standard and sample, lead to high accuracy as well as precision. Recent advances in continuous flow measurement of 13C/12C ratios of CO2 in air and extensions of the technique to 14C, which can be analysed as a stable isotope, are described.  相似文献   

7.
Castrillo A  Casa G  Gianfrani L 《Optics letters》2007,32(20):3047-3049
A mid-infrared laser spectrometer was developed for simultaneous high-precision (18)O/(16)O and (17)O/(16)O isotope ratio measurements in carbon dioxide. A continuous-wave, liquid-nitrogen cooled, distributed feedback quantum cascade laser, working at a wavelength of 4.3 microm, was used to probe (12)C(16)O(2), (16)O(12)C(18)O, and (16)O(12)C(17)O lines at ~2311.8 cm(-1). High sensitivity was achieved by means of wavelength modulation spectroscopy with second-harmonic detection. The experimental reproducibility in the short and long terms was deeply investigated through the accurate analysis of a large number of spectra. In particular, we found a short term precision of 0.5 per thousand and 0.6 per thousand, respectively, for (18)O/(16)O and (17)O/(16)O isotope ratios. The occurrence of systematic deviations is also discussed.  相似文献   

8.
9.
A portable modular gas sensor for measuring the 13C/12C isotopic ratio in CO2 with a precision of 0.8‰(±1σ) was developed for volcanic gas emission studies. This sensor employed a difference frequency generation (DFG)-based spectroscopic source operating at 4.35 μm (∼2300 cm-1) in combination with a dual-chamber gas absorption cell. Direct absorption spectroscopy using this specially designed cell permitted rapid comparisons of isotopic ratios of a gas sample and a reference standard for appropriately selected CO2 absorption lines. Special attention was given to minimizing undesirable precision degrading effects, in particular temperature and pressure fluctuations. Received: 16 April 2002 / Revised version: 28 May 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +1-713/5245237, E-mail: fkt@rice.edu  相似文献   

10.
ABSTRACT

Particulate matter (PM) from atmospheric aerosols contains carbons that are harmful for living organisms and the environment. PM can originate from vehicle emissions, wearing of vehicle components, and dust. Size and composition determine PM transport and penetration depth into the respiratory system. Understanding PM emission characteristics is essential for developing strategies to improve air quality. The number of studies on carbon isotope composition (13C/12C) of PM samples to characterise emission factors has increased. The goal of this review is to integrate and interpret the findings from 13C/12C carbon isotope ratio (δ13C, ‰) analyses for the most common types of emission sources. The review integrates data from 25 studies in 13 countries. The range of δ13C of PM from vehicle emissions was from ?28.3 to ?24.5?‰ and for non-vehicle anthropogenic emissions from ?27.4 to ?23.3?‰. In contrast, PM ranges for δ13C from biomass burning sources differed markedly. For C3 plants, δ13C ranged from ?34.7 to ?25.4?‰ and for C4 plants from ?22.2 to ?13.0?‰. The 13C/12C isotope analysis of PM is valuable for understanding the sources of pollutants and distinguishing vehicle emissions from biomass burning. However, additional markers are needed to further distinguish other anthropogenic sources.  相似文献   

11.
Correlations between a sample and a sealed reference cell of a tunable diode laser spectrometer for the measurement of the isotopic composition (δ 13C) and the concentration of atmospheric carbon dioxide in air have been investigated. Likely due to fluctuations of the laser emission profile, these correlations have been used to improve the performance of the instrument. In a comparison with isotope ratio mass spectrometer and gas chromatographic measurements, an accuracy of 0.15 for δ 13C and 0.05 ppmv for the CO2 concentration is demonstrated for 40 s integration time. Long-term stability and field deployment of the instrument have been investigated during a few days measurement campaign in Paris.  相似文献   

12.
A distributed feedback diode laser sensor based upon off-axis cavity-enhanced absorption spectroscopy at 1605.5 nm has been developed for 13C16O2/12C16O2 isotope ratio measurements in synthetic air and human breath. A noise-equivalent absorption sensitivity of 3.9×10-10 cm-1 Hz-1/2 has been determined for a cavity base length of 28.2 cm and averaging 4000 scans within 8.688 s. For 5% CO2 concentration measurements, δ13C standard deviations of 1.8 ‰ and 3.7 ‰ have been estimated for five successive measurements based on peak height and integrated area estimations at 107.9 Torr, respectively. The contributions of amplified spontaneous emission of the laser and a radiation that is spatially uncoupled into the cavity mode have been described for cavity transmittance measurements. The limitations of the developed sensor and further steps towards precision and accuracy improvements are discussed. PACS 42.55.Px; 39.30.+w; 42.62.Fi; 42.60.-v  相似文献   

13.
The isotope-selective multiphoton dissociation of CHClF2 in a multipass refocusing Herriott cell was used to enrich more than 4 moles of chlorodifluoromethane to 99.99% of12C isotopic purity. It is the largest isotope quantity ever separated by a laser process. A cw excited mechanically Q-switched CO2 laser, which delivers 16 mJ pulses at 5 kHz was used. The enrichment controlled by a mass-spectrometer and guided by a PC was run with a rate of 25 g12C per 24 h.  相似文献   

14.
The increasing application of 13C-labelled urea in medicine requires simple and reasonable methods for measuring highly enriched C in urea. The combination: ultimate organic analysis--mass spectrometry so far prescribed is complicated and expensive. For medical diagnosis, however, isotope selective nondispersive infrared spectrometers (NDIRS) have been available for many years. One of these tools is FANci2 which is very reasonable and easily to be operated. By means of such devices also urea highly enriched in 13C can be analysed, provided that the samples are first diluted with a defined amount of urea of natural isotopic composition and then transformed into carbon dioxide by means of urease. The relative abundance of 13C in this carbon dioxide, measured by nondispersive infrared spectrometry, is then a measure of the 13C abundance in the initial urea sample. Comparison of results of such measurements with those attained by mass spectrometry proves that this procedure is feasible and yields precis results.  相似文献   

15.
16.
17.
Belorussian State University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 35, No. 2, pp. 103–129, February, 1992.  相似文献   

18.
A tunable diode laser absorption spectroscopy (TDLAS) technique and appropriate instrumentation was developed for the measurement of temperature and water vapor concentrations in heated gases. The technique is based on the detection of the spectra of H2O absorption lines with different energies of low levels. The following absorption lines of H2O were used: 7189.344 cm−1 (E″=142 cm−1), 7189.541 cm−1 (E″=1255 cm−1), 7189.715 cm−1 (E″=2005 cm−1). Spectra were recorded using fast frequency scanning of a single distributed feedback (DFB) laser. A unique differential scheme for the recording of the absorption spectra was developed. An optimal technique for fitting the experimental spectra was developed.  相似文献   

19.
We have been studying the practical CO2-laser-induced13C separation by a two-stage IRMPD process. The IRMPD of natural CHClF2 in the presence of Br2 mainly produced CBr2F2, which was found to be highly enriched with13C. The yield and13C-atom fraction of CBr2F2 were examined as functions of pulse number, laser line, laser fluence, total pressure, and Br2 pressure using a CO2 TEA laser with an output less than 1 J pulse–1 in order to optimize experimental conditions for13C separation. For example, we obtained CBr2F2 at a13C concentration of 55% in the irradiation of the mixture of 100-Torr CHClF2 and 10-Torr Br2 with the laser radiation at a wavenumber of 1045.02 cm–1 and at a fluence of 3.4 J cm–2. The mechanism for the IRMPD is discussed on the basis of observed results. Using 8-J pulses, we were able to obtain 1.9×10–4 g of13C-enriched CBr2F2 (13C-atom fraction, 47%) per pulse under selected conditions. It is possible to produce 90% or higher13C by the second-stage IRMPD of the CBr2F2 in the presence of oxygen.  相似文献   

20.
Pulsed CO2 laser multiple-photon dissociation of CTF3 (v 2 mode) bathed in argon and CDF3, CHF3 or CCl4 is examined as a function of laser wavelength (9.2–9.6 m) and fluence. The dependence of the dissociation profile on wavelength is analyzed and comparisons are made to prior work. The single-stepT/D enrichment factor for infrared photolysis of trifluoromethane is measured; potential practical isotope separation is discussed. Pulsed infrared laser photolysis of CTF3 (v 5 mode) using a 12 m NH3 laser is also attempted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号